A First Step up the Energy Ladder? - [PDF Document] (2024)

Policy Research Working Paper 7859

A First Step up the Energy Ladder?

Low Cost Solar Kits and Household’s Welfare in Rural Rwanda

Michael GrimmAnicet Munyehirwe

Jörg PetersMaximiliane Sievert

Development Economics Vice PresidencyOperations and Strategy TeamOctober 2016

WPS7859P

ublic

Dis

clos

ure

Aut

horiz

edP

ublic

Dis

clos

ure

Aut

horiz

edP

ublic

Dis

clos

ure

Aut

horiz

edP

ublic

Dis

clos

ure

Aut

horiz

edP

ublic

Dis

clos

ure

Aut

horiz

edP

ublic

Dis

clos

ure

Aut

horiz

edP

ublic

Dis

clos

ure

Aut

horiz

edP

ublic

Dis

clos

ure

Aut

horiz

ed

Produced by the Research Support Team

Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 7859

This paper is a product of the Operations and Strategy Team, Development Economics Vice Presidency. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors may be contacted at [emailprotected], [emailprotected], and [emailprotected].

More than 1.1 billion people in developing countries are lacking access to electricity. Based on the assumption that electricity is a prerequisite for human development, the United Nations has proclaimed the goal of providing elec-tricity to all by 2030. In recent years, Pico-Photovoltaic kits have become a low-cost alternative to investment intensive grid electrification. Using a randomized controlled trial, the paper examines uptake and impacts of a simple Pico-Photovoltaic kit that barely exceeds the modern energy

benchmark defined by the United Nations. The authors find significant positive effects on household energy expen-ditures and some indication for effects on health, domestic productivity, and on the environment. Since only parts of these effects are internalized, underinvestment into the technology is likely. In addition, our data show that adop-tion will be impeded by affordability, suggesting that policy would have to consider more direct promotion strategies such as subsidies or financing schemes to reach the UN goal.

AFirstStepuptheEnergyLadder?LowCostSolarKitsand

Household’sWelfareinRuralRwanda

MichaelGrimm,AnicetMunyehirwe,JörgPeters,andMaximilianeSievert

JELcodes:D13,H23, H43, I31,O13,O18,Q41.Keywords:SustainableEnergyforAll(SE4All),householdwelfare,householdtechnology

adoption,Sub‐SaharanAfrica,RandomizedControlledTrial.

Michael Grimm is a Professor of Development Economics at University of Passau. He is also affiliated with Erasmus University Rotterdam and IZA, Bonn; [emailprotected]. Anicet Munyehirwe is director of IB&C Rwanda; [emailprotected]. Jörg Peters is heading the research group “Climate Change in Developing Countries” at RWI, Germany. He is Visiting Associate Professor at the University of the Witwatersrand, Johannesburg, South Africa; [emailprotected]. Maximiliane Sievert (corresponding author) is Research Fellow at RWI, Germany; [emailprotected]. We thank two anonymous referees and the editor for very valuable comments. We also thank conference participants in Münster (VfS 2015), in Oxford (CSAE 2015), in Kiel (VfS Development Economics 2015), Copenhagen (PEGNET 2013) and Düsseldorf (IAEE 2013) as well as participants at research seminars at the University of Bonn (ZEF), the Kiel Institute for the World Economy, and the University of Groningen. The data underlying this research was collected for an impact evaluation commissioned by the Policy and Evaluation Department of the Ministry of Foreign Affairs of the Netherlands (IOB). This work was supported by the German Federal Ministry for Economic Affairs and Energy and the Ministry of Innovation, Science, and Research of the State of North Rhine-Westphalia [Sondertatbestand – special grant] to JP and MS. Please cite the version of this paper published in the World Bank Economic Review (http://wber.oxfordjournals.org/).

Morethan1.1billionpeopleindevelopingcountrieslackaccesstoelectricity.Some

590millionofthemliveinAfrica,wheretheruralelectrificationrateisonly14percent

(SE4All 2015). Providing access to electricity is an explicit goal of the sustainable

developmentgoals(SDGs)andfrequentlyconsideredapreconditionforeconomicand

socialdevelopment(UN2005).Basedonsuchassumptions,theUnitedNationsaims

foruniversalaccesstoelectricityby2030viaitsinitiativeSustainableEnergyforAll

(SE4All; seealsoUN2010).The investment requirements toachieve this targetare

enormous,estimatedbytheInternationalEnergyAgency(IEA)(2011)tobeabout640

billionUSDollars.

In recent years, so‐calledPico‐Photovoltaic (Pico‐PV) kits have become a low‐cost

alternativetoexistingelectrificationtechnologiesthankstoasubstantialcostdecrease

ofphotovoltaicandbatterysystemsaswellasenergysavingLED lamps.Different

Pico‐PV kits exist that provide basic energy services like lighting,mobile phone

charging,andradiousage. In theSE4All initiative’smulti‐tierdefinitionofwhat is

consideredasmodernenergy,thePico‐PVtechnologyconstitutestheTier1andthus

thefirststeponthemetaphoricenergyladder.InvestmentcostsforPico‐PVkitsare

farlowerthanfortheprovisionofon‐gridelectricityorhighertierPVsystems.

Thispaperinvestigatesusagebehaviorandthechangesinpeople’slivingconditions

whenhouseholdsmakethisfirststeptowardmodernenergybasedonarandomized

controlled trial (RCT) thatwe implemented in rural Rwanda. The kit,whichwe

randomlyassignedfreeofchargeto150outof300householdsin15remotevillages,

consistsofa1Wattsolarpanel,a40lumenlamp,atelephonecharger,andaradio—

and thereby justbarelyreaches thebenchmarkofwhatqualifiesasmodernenergy

accessintheSE4Allframework.ThemarketpriceofthefullPico‐PVkitisataround

30USD.OurstudypopulationisthemaintargetgroupofthePico‐PVtechnology,that

is,thebottom‐of‐the‐pyramidlivinginacountry’speripherywhowillnotbereached

bytheelectricitygridintheyearstocomeandwhowillhaveproblemstoaffordhigher

tierPVsystems.

WeinvestigatetheadoptionofthePico‐PVkitatboththeextensiveandtheintensive

margin.At theextensivemargin,weexaminewhetherhouseholdsactuallyuse the

Pico‐PV kit. This is not obvious given thatwe distribute the kit for free and the

technologyisnewforthehouseholds.Thereisanintensedebateinthedevelopment

communityaboutusageintensityoffreelydistributedgoods(see,e.g.,Dupas2014).

Attheintensivemargin,soconditionalonhouseholdsusingthekit,weexaminethe

effectsofPico‐PVusageonthreetypesofoutcomes:energyexpenditures,healthand

environment,andproductivity indomesticwork.Theamplitudeofeffectsheavily

dependsonusagebehavior:isthekitusedinadditionorasasubstitutetotraditional

lightingsourceslikekerosene?Whichhouseholdmemberusesthekitandforwhich

purposes?Dohouseholdsexpand theiractivities that require lighting into evening

hours,ordotheyjustshiftactivitiesfromdaytimetonighttime?Doesthetotaltime

awakeofhouseholdmemberschange?NonelectrifiedruralhouseholdsinAfricaare

increasinglyusingLEDlampsthatrunondry‐cellbatteries.Sincethesebatteriesare

notdisposedofappropriatelyandpotentiallyharm the localenvironment,Pico‐PV

usagemightalsoinduceenvironmentalbenefits.Wealsoanalyzewhetherpotential

productivitygainsindomesticworkreleasetimethatcannowbededicatedtoincome

generatingactivities.

OurpapercomplementstheseminalworkofFurukawa(2014)whostudiestheeffects

ofPico‐PV lampson children’s learningoutcomes in ruralUganda.Weextend the

scopebyexamining theeffectsofPico‐PVkitsonvarious in‐houseactivitiesofall

householdmembers,notonlythoseofschoolchildren.Wefindthathouseholdsuse

the kits intensively in spite of the zero price and the novelty of the product.

Furthermore,thekitconsiderablyreducesconsumptionofkerosene,candles,anddry‐

cellbatteriesand, in consequence,energy expenditures.The reductionofkerosene

improveshousehold airquality and the reductionofdry‐cellbattery consumption

plausiblyleadstoenvironmentalbenefits.Moreover,wefindthatchildrenshiftpart

of theirhomework into theeveninghours.Primaryschoolboyseven increase their

totalstudy time.Whilepartsof theseeffectsareclearly internalizedbenefits,other

partsareimportantexternalities,whichmayprovidethecauseforpublicsubsidies,in

particularifitturnsoutthathouseholdsaresimplytoopoortoraisetheupfrontcosts

alone.

TheroleofpublicpolicyinthepromotionofPico‐PVtechnologyisnotdefinedsofar.

TheexpectationoftheWorldBank’sLightingGlobalprogram,forexample,aswellas

otherdonorsisthatPico‐PVkitsmakeinroadstoAfricanhouseholdsviacommercial

markets,implyingthatenduserspaycost‐coveringprices(seeLightingGlobal2016).

Thismightinfactworkoutfortherelativelywell‐offstratainruralareasbutismuch

moreuncertainfortheruralpoor.Infact,themajortargetgroupofPico‐PVkitswithin

theSE4Allendeavorislocatedbeyondthereachofthegridinremoterareas.These

households are short on cash, credit constrained, andmight havemore essential

prioritiestospendtheirmoneyon.Ifthesegroupsintheperipheryofthedeveloping

world shall be reached by the SE4All initiative, direct subsidies or even a free

distributionmightberequired.Thisisindeedthepolicyinterventionwemimicinour

study.Fromawelfareeconomicspointofviewthiswouldbejustifiediftheusageof

Pico‐PVkitsgeneratesprivateandsocialreturnsthatoutweightheinvestmentcost.

Ourpaperprovidesempiricalsubstancetothisdebate.

Sofar,onlyverylittleevidenceexistsonthetake‐upandimpactsofPico‐PVlamps.To

ourknowledge, theonlypublishedstudy isFurukawa (2014),whoconcentrateson

educational outcomes alone. Furukawa randomized Pico‐PV lamps among 155

primaryschoolstudentsinUgandawhoatbaselineusedkerosenewicklampsasthe

mainlightingsourceathome.AlthoughFurukawa(2014)findsthatchildren’sstudy

hours clearly increased among Pico‐PV lamp owners, he curiously observes

decreasing test scores. Furukawa tests different explanations of this “unexpected

result”.Withouthavingthedataathandtoobtainarobustanswer,hehypothesizes

thatthelowpowerofthelampsandtheinadequaterechargingbehaviorcouldhave

ledtoflickeringlight,whicheventuallyworsenedstudyingconditions.Basedonthis

experience,wewillthereforecarefullycheckthelightingqualityandusers’satisfaction

inourexperiment.

Much more evidence exists on the socioeconomic effects of classical rural

electrificationprogramsusinghigher tier technologies,mostly theextensionof the

electricitygrid.Theseinterventionsdifferfromourrandomizedsolarkittotheextent

thatmuchhighereffectsizescanbeexpected,butalsomuchhighercostsareincurred.

Nonetheless, this literature constitutes an important background of ourwork, in

particular those studies that explore the effects of electricity usage on similar

outcomes.VandeWalleetal.(2016)forinstancefindthatinruralIndiaelectrification

led to a significant increase in households’ expenditures. For the case of a grid

extensionprograminElSalvador,BarronandTorero(2014,2015)findreductionsin

kerosene consumption, in particulate matter exposure, and respiratory disease

prevalenceaswellasanincreaseinstudyhoursamongchildren.Thelatterfindingis

confirmedinagridextensionprograminBangladesh(Khandkeretal.2012)butnotin

apreviousstudy inRwandaon theeffectsofmini‐gridelectrification (Benschetal.

2011).ForSouthAfricaandNicaragua,respectively,Dinkelman (2011)andGrogan

andSadanand(2013)provideevidencethattheuseofelectricitysaveswomen’stime

inhouseholdchoresandleadstoincreasedlaborsupplyofwomen.1

In SE4All’s multi‐tier framework solar home systems are the intermediate step

betweenPico‐PVandgridelectricity.Samadetal.(2013)evaluateasolarhomesystem

programinBangladeshandfindincreasesineveningstudyhoursofschoolchildren,

TV usage, and female decision‐making power. They also find reduced kerosene

consumptionand somemoderateevidence forpositivehealtheffects.Benschetal.

1Furtherstudiesexistthatexaminewhetheron‐gridruralelectrificationprogramscanspurincomegenerationand

economicgrowth(see,e.g.,Benschetal.2011;Dinkelman2011;Bernard2012;Khandkeretal.2012,2013;Grogan

andSadanand2013;Lipscometal.2013;BarronandTorero2014;Lenzetal.2016;PetersandSievert2016).As

discussedabove,wedonotexpectthePico‐PVsystemstoaffectsuchoutcomes.

(2013) confirmpositive effects of solar home systemusage on children’s studying

hoursinSenegal.

Itistheaimofourpapertoextendthescopeofthisliteraturetothebottomstepofthe

energy ladder. Hence, these findings are important to classify our observations,

although of course the cost‐related and technological differences between on‐grid

electricity,50Wattsolarhomesystemsandour1WattPico‐PVkithavetobebornein

mind.

The remainderof thepaper isorganizedas follows:Section Igives thepolicyand

countrybackground.SectionIIprovidestheoreticalconsiderationsthatwillguideour

empiricalanalysis.SectionIIIpresentsourexperimentaldesign.SectionIVdiscusses

allresults,andSectionVconcludes.

Background

PolicyBackground

Intheabsenceofelectricity,peopleinruralSub‐SaharanAfricalighttheirhomesusing

traditional lighting sources—candlesorkerosenedrivenwick lampsandhurricane

lamps.Inrecentyears,dry‐cellbatterydrivenLED‐lampshavebecomeavailable in

almosteveryruralshopandareincreasinglyused(seeBenschetal.2015).Themost

common ones are small LED‐torches andmobile LED‐lamps that exist in various

versions (see Figure 1). In addition,many rural households use hand‐crafted LED

lamps,thatis,LED‐lampsthatareremovedfromtorchesandinstalledsomewherein

thehouseorona stick thatcanbecarriedaround.For ruralhouseholds inAfrica,

expenditures forboth traditional lightingsourcesanddry‐cellbatteriesconstitutea

considerablepartoftheirtotalexpenditures.Inveryremoteandpoorareas,people

whoarecashconstrainedgenerallyusevery littleartificial lightingand sometimes

evenonlyresorttothelightingthatthecookingfireemits.Forthisstratum,theday

inevitablyendsaftersunset.

Figure1:Traditionallightingdevices

Hurricane

lamp

Traditionaltin

lamp

Ready‐

madetorch

Hand‐crafted

LEDlamp

MobileLEDlamp

Source:Ownillustration

Obviously, this lightingconstraintrestrictspeople inmanyregards.Activitiesafter

nightfallareliterallyexpensivebutalsodifficultandtiringbecauseofthelowquality

ofthelighting(seeSectionIIformoreinformationonlightingquality).Atthesame

time,itbecomesevidentthatmodernenergyisnotabinarysituation.Rather,thereare

severalstepsbetweenacandleandanincandescentlightbulb.

Thiscontinuumhassometimesbeenreferredtoastheenergyladder.Infact,SE4Allhas

defineddifferenttiersofmodernenergyaccesswithinitsGlobalTrackingFramework

(SE4All2013)accordingtotheelectricitysupplythatismadeavailable.Forexample,

aregularconnectiontothenationalgridqualifiesasTier3,becauseitallowsforusing

generallighting,atelevision,andafanthewholeday.Asolarhomesystemwould

qualifyforTier1or2(dependingonitscapacity).Tier1requireshavingaccesstoa

peakcapacityofatleast1Wattandbasicenergyservicescomprisingatasklightand

aradiooraphonecharger for fourhoursperday.Thespreadbetween theservice

qualitiesof thedifferent tiers isalso reflected in the required investmentcosts: the

retailpriceofthePico‐PVkitusedinthisstudyisataround30USD.TheWorldBank

(2009)estimatesacostrangeforon‐gridelectrificationinruralareasof730to1450USD

perconnection.2

The promotion of Pico‐PV kits ismost prominently pursued by theWorld Bank

programLightingGlobal.BasedontheassumptionthatthemarketforPico‐PVsystems

is threatened by a lack of information and information asymmetries, it provides

technical assistance togovernments, conductsmarket research, facilitates access to

financetomarketplayers,andhasintroducedaqualitycertificateforPico‐PVsystems.

TheobjectiveofLightingGlobal’sinitiativeintheregion,LightingAfrica,istoprovide

accesstocertificatedPico‐PVkitsto250millionpeopleby2030.ThePico‐PVlantern

andthepanelusedforthepresentstudywerecertifiedbyLightingAfrica.3

2TheinvestmentrequirementscalculatedbyIEA(2011)ofadditional640billionUSDtoachieveuniversalaccess

toelectricityarebasedonelectricityconnectionsthatprovideaminimumlevelofelectricityof250kWhperyear.

ThisroughlycorrespondstoaTier2electricitysource.3At thepointof thePico‐PVkit’s certification,LightingAfricadidnotyet issue certificates formobilephone

chargingandotherservices.

CountryBackground

Rwanda’senergysectorisundergoinganextensivetransitionwithaccesstoelectricity

playing a dominating role. The Government of Rwanda’s goal is to increase the

electrificationrateto70percentofthepopulationby2017/2018andtofullcoverageby

2020. The key policy instrument clearly is the huge Electricity Access Roll‐Out

Program (EARP) that since 2009 quintuplicated the national connection rate to 24

percentcountrywide.Threefurtherprogramsexistthathavenotbeenimplemented

sofar,though.First,theGovernmentplanstoestablishamechanismtoprovidethe

pooresthouseholds(categorizedasUbudehe1accordingtothenationalpovertyscale)

with abasic solar system corresponding toTier 1 electricity access. Second, a risk

mitigationfacilityshallbeestablishedtoencouragetheprivatesectortoincreasesales

ofsolarproductsand services.Third,mini‐gridsshallbedevelopedby theprivate

sector(MININFRA2016).Theseprogramsarecomplementedbytheso‐calledByeBye

Agatadowa initiative that aims at eliminating kerosene lamps completely from the

country.

Intheabsenceofpublicpromotionschemes,fewprivatefirmsthatsellLightingAfrica

verified Pico‐PV kits were active in the country at the time of the study

implementation.TheyoperatemostlyintheRwandancapitalKigaliandothercities.

In rural areas,Pico‐PV kits are sometimes available,but their retailprice ismuch

higher compared to lower quality dry‐cell battery driven LED‐lamps that can be

boughtinruralshopsalloverthecountry.Thesedevicesarenotqualityverified,but

costonlybetween500FRW(0.82USD4)forhand‐craftedLEDlampsand3000FRW

(4.95USD)foranLEDhurricanelamp.ThebatterycoststorunanLEDhurricanelamp

foronehourarearound0.01USD.Thisischeaperthanrunningakerosenedrivenwick

lamp(around0.03USDperhour)andthelightingqualityisslightlybetter,whichis

whymanyhouseholdsarenowusingsuchready‐madeorhand‐craftedLED‐lamps.

Compared to both battery‐driven LED lamps and kerosene lamps, Pico‐PV kits

providehigherquality lighting (dependingon thenumberofLEDdiodes)atzero

operatingcosts.Assumingthatahouseholdusesthelampforfourhoursperday,the

investmentintothePico‐PVlampusedforthisstudyamortizesafter10monthsifa

ready‐madeLEDlampisreplacedandafterlessthan5monthsifitreplacesakerosene

wicklamp.

TheoreticalConsiderations

Based on the literature on rural electrification presented in the Introduction,we

assumethatthePico‐PVtreatmentaffectsthreedimensionsoflivingconditions:First,

the budget effect which arises because households with access to a Pico‐PV kit

experienceachange in thepriceofenergy,whileno (substantial) investmentcosts

occuraslongasweassumethatthePico‐PVtreatmentissubsidizedordistributedfor

free. Second, health and environmental effects occurwhenever Pico‐PV kits replace

kerosene lamps,candles,anddry‐cellbatteries.Adecrease inkeroseneandcandles

4ExchangerateasofNovember2011:1USD=607FRW.

consumptionreduceshouseholdairpollutionwithpotentialeffectsonhealth(seeLam

etal.2012;WHO2016).Environmentalbenefitsarisedue to inappropriatedry‐cell

batterydisposal(seeBenschet.al2015)thatisreducedifdry‐cellbatteryconsumption

goes down. Third, we analyze the productivity of domestic production, that is,

productionnot intended tobe tradedon competitivemarkets.Thiswe refer to as

domesticproductivityeffectinwhatfollows.Thereasonforonlyfocusingondomestic

production is that income insuchremoteruralareas isvirtuallyonlygeneratedby

subsistence agriculture.ThePico‐PV kit, in turn, is too small to affect agricultural

production. For non‐agricultural products, access tomarkets is very limited and,

hence, localnonagricultural labormarketsarenonexistent.Atbaseline,only seven

percentofheadofhousehold’smainoccupationandonepercentof spouse’smain

occupationwasanon‐agriculturalactivity.Yet,sinceintheorythePico‐PVkitcould

liberatetimefromdomesticlaborandextendthetimeawakeofhouseholdmembers,

weexamineatleastthetimededicatedtoanyincomegeneratingactivity(agricultural

andnonagriculturalactivities).Labordemandinsuchruralregionsistoolow,though,

to absorb increases in labor supply, and therefore measurable effects on

nonagriculturalincomecannotbeexpected.

Themechanismleadingtothebudgetandhealthandenvironmentaleffectsarequite

intuitive,whereasthetransmissionchannelforthedomesticproductivityeffectmight

belessobvious.Productiveactivitiesathomeincludecooking,cleaning,andmaking

andrepairingofhouseholdgoodsaswellasstudyingandchargingacellphone.Since

thevisualperformanceofhumansstronglyincreaseswiththelightinglevel(Brainard

etal.2001),weassumethattheproductivityinperformingtheseactivitiesincreases

withthequantityandqualityoflight.Productivityinfineassemblyworkforinstance

hasbeenshowntoincreaseby28percentasthelightinglevelincreasesfrom500to

1500lumen(lm)(Lange1999).Butevenincreasingthelightinglevelfrommuchlower

levelscomeswithsignificantproductivityeffects.Evidencecomesforinstancefrom

weavingmills(Lange1999).5Theliteratureattributesgoodqualitylightingtodevices

that provide sufficient, nonglaring, nonflickering and uniform light, balanced

luminousdistribution throughout the room,good color renderingandappropriate

lightcolor(Lange1999).Alongallthesecriteria,thePico‐PVkitsperformbetterthan

other traditional lighting devices such as kerosene lamps and candles, but also

comparedtosmallerhand‐craftedLEDlamps.OurPico‐PVlampemits40lm,whilea

candleonlyemitsaround12lm,ahurricanelampusedatfullcapacityaround32lm

andlargemobileLEDlampscanreachlevelsaround100lm(O’SullivanandBarnes

2006). The LED lamps used in poor and remote areas are less luminous, though.

Lumenlevelsemittedbyhand‐craftedLEDlampsvarysubstantiallydependingonthe

numberandqualityofdiodesandbatteriesused.Twotothreediode‐lampsconnected

toabatterypackageemitabout10lm.6

5Moreevidenceexistsalsoonsofterimpactssuchasapositivelinkagebetweenlightingandworkmood(Kuller

andWetterberg1993;Boyceetal.1997;PartonenandLönnqvist2000),fatigue(Dauratetal.1993;Grunbergeret

al.1993;Begemannetal.1997),andeyestrainandheadache(Wilkinsetal.1989,KullerandLaike1998)thatcan

beassumedtoimproveworkingperformance.Foradetailedpresentationoftheevidenceforproductivityeffects

associatedwithlight,seethesupplementalappendix.

6Sincelumennumbersforthesehand‐craftedlampsdonotexist,wetestedthetwomostwidelyusedstructures(a

twodiode‐lampandathreediode‐lampstructure)inalaboratoryatUniversityofUlm,Germany,usingstandard

lumenemissiontestprocedures.Accordingtothesetests,thelevelofemittedlumensbyhand‐craftedLEDlamps

isataround10lm.

Oneadditionaleffectassociatedwithapossibleincreaseinradiousageisbetteraccess

toinformation,whichinturnmayhaveproductivityeffectsiftheinformationrelates

tomarketdataorcanaffectnorms,suchasgendernormsforinstance,andpreferences

(Bertrand et al. 2006; Jensen andOster 2009; La Ferrara et al. 2012; Sievert 2015).

AlthoughweanalyzewhetherradiosareusedwiththePico‐PVkitanddisplayradio

ownershipandusage in the supplementalappendix (seeAppendixS5),wedonot

furtherinvestigateanyoftheseeffectsasmosthouseholdsusethePico‐PVkitonlyfor

lighting.

ResearchApproachandData

OuridentificationstrategyreliesontherandomizedassignmentofPico‐PVkitsafter

thebaselinesurvey.Theintention‐to‐treateffect(ITT)inourcaseisalmostidenticalto

theaveragetreatmenteffectonthetreated(ATT)becauseofthehighcompliancerate

inthetreatmentgroupandnotreatmentcontaminationinthecontrolgroup.Sinceall

resultsarerobustwithregardtobothwaysofestimatingimpacts,weshowonlythe

moreconservativeITTresults.

Treatment

Therandomizedkits includea1Wattpanel,arechargeable4‐LED‐diodes lamp(40

lumenmaximum) including an installed battery, amobile phone charger, a radio

including a charger, and a back‐up batterypackage (see Figure 2)Error!Reference

sourcenotfound..7Therearedifferentoptionstousethepanel.First,itcanbeusedto

directlychargethelamp’sbattery.Afteronedayofsolarchargingitisfullycharged.

Thelampcanbeusedinthreedimminglevelsand—fullycharged—provideslighting

forbetween6and30hoursdependingonthechosenintensitylevel.Second,thekit

canbeconnecteddirectlytothemobilephoneconnectorplugandtheradioconnector

tochargemobilephonesortheradio.Third,thekitcanbeusedtochargetheback‐up

batterypackagethatcanthenbeusedtochargetheotherdeviceswithoutsunlight.

Thecompletekitcostsaround30USD,thesmallestversionwithonlythesolarpanel

andanLEDlampincludinganinstalledbatterycostsaround16.50USD.

Figure2:ThePico‐PVkit

Source:Ownillustration

ImpactIndicators

As a precondition for the three effects on budget, health, and environment, and

domesticproductivitythehouseholds’usagebehaviorisourfirstmatterofinterest.

WelookatusageandchargingpatternsofthePico‐PVkitandanalyzewhichofthe

7ThekitusedinourexperimentprovidesmoreenergyservicesthanthesolarlanternusedbyFurukawa(2014),

butthepanelisalsotwiceaslarge(1Wattcomparedto0.5Watt).

different energy services—lighting, radio operation, andmobilephone charging—

householdsusemost.Sincethekitismostlyusedforlighting(seebelow),wefocusin

particularonthisservice.

Forbudget effects,we first look at changes in thepriceof the energy service.We

calculatethepriceperlightinghourandpriceperlumenhourthehouseholdseffectively

pay. Second,we analyzewhether price effects translate into a change in lighting

consumption.Here,welookattheaverageamountoflightinghoursconsumedperday

andlumenhoursconsumedperday.Lightinghoursarecalculatedasthesumofusage

time of all lamps used during a typical day (including candles and ready‐made

torches).Thepriceperlightinghouriscalculatedbydividingexpendituresonlighting

fuelsby thenumberof lightinghours consumed.For calculating lumenhours,we

multiplythelampspecificlightinghourswiththeamountoflumenemittedperlamp.

Finally,welookatchangesintotalenergyexpendituresandintheexpendituresforthe

differentenergysourceskerosene,batteries,andcandles.

For health and environmental effects,we first explore reductions in kerosene and

candleconsumptionandtowhatextentthisleadstoaperceivedimprovementofair

quality,measuredbythesubjectiveassessmentoftherespondents.Alsoformeasuring

the household members’ health status, we rely on self‐reported information on

whetheranyhouseholdmembersuffersfromrespiratorydiseasesandeyeproblems.We

distinguishbetweenmaleandfemaleadultsaswellasprimary,andsecondaryschool

children.We did not measure air quality or undertake any medical exams. For

environmentaleffects,weanalyze reductions indry‐cellbatteryconsumptionand the

wayhowhouseholdsdisposeofdry‐cellbatteries.

In order to investigate domestic productivity effects,we look at themain users’

domesticlaboractivitiesexercisedwhenusingthePico‐PVlamp.Themaindomestic

laboractivityforadultsishousework;childrenusethelampmainlyforstudying.We

assesstheincreaseofdomesticproductivitybyanalyzingthelightingsourceusedfor

these respective activities. Based on the evidence from the literature presented in

SectionIIandthesupplementalappendix,weassumethathouseholdsbecomemore

productivewhen they switch from a lower quality lighting source or no artificial

lightingtothePico‐PVlamp.Thisseemsreasonablesinceevenatdaytime,thetypical

dwellinginruralRwandaisquitedark.Windowsaresmallinordertokeeptherain

and the heat out of the inner of the dwelling. To analyze lamp switching, we

enumeratedalllampsineachhouseholdinterviewandaskedrespondentstonameall

usersforeachlampandtherespectivepurposeofusingit.Theinformationontime

spentondifferentactivitieswaselicitedintheinterviewsthroughanactivityprofile

for eachhouseholdmember. If a certain activitypursuedby thehousehold isnot

associatedwithoneoftheemployedlamps,weassumethatnospecificlightingdevice

isused for thisactivity, and it is either exercisedusingdaylight,orusing indirect

lightingfromthefireplaceorlampsusedforotherhouseholdtasks.

Inordertoanalyzewhetherthehigherproductivityalsoleadstoanincreaseintotal

domesticlaborinput,weanalyzethetotalamountoftimededicatedtodomesticlaborper

day.Wefurthermoreexaminewhethertotaltimehouseholdmembersareawakechanges

dueto increased lightingavailabilityandwhethertimededicatedto incomegenerating

activitieschangesasaresultoftimesavingsindomesticproduction.

RCTImplementation

ThekeyfactsoftheimplementationarepresentedinTable1.Adetaileddescriptionof

theimplementation includingamapofthesurveyareaandafigureillustratingthe

participant flow can be found in the supplemental appendix.A discussion of the

externalvalidityofourresultsisalsopresentedinthesupplementalappendix.

Table1.KeyFactsonRCTImplementation

Baselinesurvey November2011

DeliveryofPico‐PVkits December2011

Follow‐upsurvey June2012

Studypopulation15nonadjoinedcommunitiesinfourruraldistrictsofRwanda

locatedintheNorthern,WesternandSouthernProvince.

NoPico‐PVkitsavailableonthemarket

~5.5hoursofsunlightperday(whichissimilartocountryaverage)

Sample 300randomlysampledhouseholds

Randomization

Stratifiedrandomizationandadditionalre‐randomizationusing

minmaxt‐statmethodatthehouseholdlevel;randomassignmentof

150Pico‐PVkits

StratificationcriteriaConsumedlightinghoursperday,usageofmobilephones(binary),

radiousage(binary),anddistrict

Re‐randomization

BalancingcriteriaaremarkedinThesurveyedhouseholdsare

mainlysubsistencefarmersthatliveinvery

modestconditions.Theeducationallevelofthe

headofhouseholdislowandhouseholdsown

onlyafewdurableconsumptiongoods.The

householdsinoursamplehavecashexpenditures

ofonaverage0.45USD(1.12USDPPP)adayper

personwiththelower25%‐stratumhavingonly

0.07USD(0.18USDPPP).Eventheupperquartile

hascashexpendituresof1.14USD(2.86USDPPP)

only.Byanystandard,thesampledhouseholds

qualifyasextremelypoor.

Also energy consumption patterns illustrate the

precarioussituationofmosthouseholds(see

Table 3). They consume on average only around

threehours of artificial lightingperdaywhich is

mainlyprovided throughkerosenewick lampsor

battery‐driven small hand‐crafted LED lamps.

Around11percentofhouseholdsevendonotuse

any artificial lighting devices and rely only on

lighting from the fireplace after nightfall. For the

baselinevalues,wecalculate lightinghoursas the

sumoflightingusageperdayacrossallusedlamps,

excludingcandlesandtorches,forwhichwedidnot

elicitusagehoursat thebaselinestage.Almost65

percentof thehouseholdown a radio, around 40

percenthaveacellphone.

Table2and

Table3

Compensationforcontrolhouseholds Onebottleofpalmoilanda5kgsackofricewortharound7USD

Attritionrate <1%

Compliancerate 87%(18householdsdeclaredtheirPico‐PVkittobesold,lostor

stolen;Onehouseholdreceivedkitonlyduringfollow‐up)

Source:Householddataset2011/2012.

Results

BalanceofSocioeconomicCharacteristicsofParticipatingHouseholds

Thissectionexaminesthebalancingbetweentreatmentandcontrolgroupand,atthe

sametime,portraysthesocioeconomicconditionsinthestudyareas.Baselinevalues

ofthehouseholds’socioeconomiccharacteristicsshowthattherandomizationprocess

wassuccessfulinproducingtwobalancedgroups(seeThesurveyedhouseholdsare

mainlysubsistencefarmersthatliveinverymodestconditions.Theeducationallevel

oftheheadofhouseholdislowandhouseholdsownonlyafewdurableconsumption

goods.Thehouseholdsinoursamplehavecashexpendituresofonaverage0.45USD

(1.12USDPPP)adayperpersonwiththelower25%‐stratumhavingonly0.07USD

(0.18USDPPP).Eventheupperquartilehascashexpendituresof1.14USD(2.86USD

PPP)only.Byanystandard,thesampledhouseholdsqualifyasextremelypoor.

Also energy consumption patterns illustrate the precarious situation of most

households(see

Table3).Theyconsumeonaverageonlyaroundthreehoursofartificiallightingper

daywhichismainlyprovidedthroughkerosenewicklampsorbattery‐drivensmall

hand‐crafted LED lamps.Around 11 percent of households even do not use any

artificiallightingdevicesandrelyonlyonlightingfromthefireplaceafternightfall.

Forthebaselinevalues,wecalculatelightinghoursasthesumoflightingusageper

dayacrossallusedlamps,excludingcandlesandtorches,forwhichwedidnotelicit

usagehoursatthebaselinestage.Almost65percentofthehouseholdownaradio,

around40percenthaveacellphone.

Table2).

The surveyedhouseholds aremainly subsistence farmers that live inverymodest

conditions.Theeducationalleveloftheheadofhouseholdislowandhouseholdsown

only a fewdurable consumption goods.Thehouseholds in our samplehave cash

expendituresofonaverage0.45USD(1.12USDPPP)adayperpersonwiththelower

25%‐stratumhavingonly0.07USD(0.18USDPPP).Eventheupperquartilehascash

expenditures of 1.14 USD (2.86 USD PPP) only. By any standard, the sampled

householdsqualifyasextremelypoor.

Also energy consumption patterns illustrate the precarious situation of most

households(see

Table3).Theyconsumeonaverageonlyaroundthreehoursofartificiallightingper

daywhichismainlyprovidedthroughkerosenewicklampsorbattery‐drivensmall

hand‐crafted LED lamps.Around 11 percent of households even do not use any

artificiallightingdevicesandrelyonlyonlightingfromthefireplaceafternightfall.

Forthebaselinevalues,wecalculatelightinghoursasthesumoflightingusageper

dayacrossallusedlamps,excludingcandlesandtorches,forwhichwedidnotelicit

usagehoursatthebaselinestage.Almost65percentofthehouseholdownaradio,

around40percenthaveacellphone.

Table2.BalanceofSocioeconomicCharacteristicsbetweenTreatmentandControlGroup

(BaselineValues)

Treatment Control

t‐test/chi‐2‐test

(totaltreatedvs.control

p‐values)

total

(SD)

noncompliant

(SD)

total

(SD)

Householdsize1 4.85(2.0) 5.5(1.5) 5.0(2.0) .491

HH’scomposition(%)

Sharechildren0–15years 39(24) 51(16) 38(23) .680

Shareelderly65+ 7(20) 2(6) 5(16) .389

HH’sheadmale(%) 76 84 76 .892

AgeoftheHH’shead 47(15) 45(17) 48(15) .795

EducationofHHhead(%)1

None 35 53 35 .857

Primaryeducation 61 42 60

Secondaryeducationandmore 4 5 5

Cultivationofarableland(%)1 99 100 98 .314

Ownershipofarableland(%)1 95 90 95 .791

Ownershipofcows(%)1

Nocow 63 84 69 .542

Onecow 22 11 19

Morethanonecow 15 5 12

Ownershipofgoats(%)1

Nogoat 68 79 74 .476

Onegoat 16 5 12

Morethanonegoat 16 16 11

Materialofthewalls(%)1

Highervaluethanwood,mud,orclay 14 11 14 1.000

Materialofthefloor(%)1

Highervaluethanearthordung 12 5 11 .854

District(%)2

Gicumbi 19 16 20 .997

Gisagara 26 32 27

Huye 28 26 27

Rusizi 27 26 26

Numberofobservations 148 19 148

Note:1Usedforre‐randomization;2usedforstratification.

Source:Householddataset2011.

Ifwelookatthesmallgroupofnon‐compliers,whodeclaredtheirkittobesold,lost

orstolen,weseethattheyaregenerallypoorerthancomplyinghouseholds:Theyhave

morechildren,ownlessland,havelesscowsandgoats,andhavelessradiosandcell

phones.

Table3.BalanceofOutcomeRelatedCharacteristicbetweenTreatmentandControlGroup

(BaselineValues)

Treatment Controlt‐test/chi‐2‐

test

(totaltreated

vs.control

p‐values)

total

(SD)

non‐

compliant

(SD)

total

(SD)

Lightinghours,categorized(%)2

Nolampsorcandles 19 26 19

Lessorequal3h/day 51 42 51

Morethan3h/day 30 32 30 1.000

Lightinghoursperday,continuous1 3.1 2.7 3.2 .910

Usageofhand‐craftedLED1(%) 37 26 35 .628

UsageofmobileLED1(%) 4 5 3 .520

Consumptionofcandles1(piecespermonth) 1.25 2.32 1.76 .356

Usageofwicklamps(%) 49 47 47 .727

Usageofnoartificiallighting(%) 12 16 11 .715

Consumptionofkeroseneforlighting1(inliterpermonth) .46 .35 .54 .372

Radioownership2(%) 64 32 64 1.000

Mobilephoneownership2(%) 36 32 36 1.000

Numberofmobilephones1 .49 .21 .47 .876

Numberofobservations 148 19 148

Note:1usedforre‐randomization;2usedforstratification.

Source:Householddataset2011.

ImpactAssessment

Take‐UpandLightingUsage

Among the 131 households that still have a Pico‐PV kitwhen interviewed in the

follow‐upsurvey,usageratesareveryhigh(seeTable4).Insum,86percentusethe

kit at least once per day, primarily for lighting. Radio and especially cell phone

chargingusageratesareratherlow.Mosthouseholdsreportthatboththeradioand

thecellphonechargerwereverydifficulttousewiththekit,whichwasconfirmedby

technicalinspectorsinvolvedintestingthekitforLightingAfrica.Themajorreason

forthisseemstobethelowcapacityofthepanel,whichonlyallowsforchargingall

devicescompletelywithinonedayifthedailysunlightisexploitedatamaximum.In

practice,householdsusedthechargingcapacitiesmainlyforthelightingdevice.Given

thispreferenceforlighting,toolittlecapacityisleftfortheothertwoservices.Forcell

phonecharging,noncompatibilityofthesolarchargerwithsomeofthewidelyused

cell phone types in rural Rwanda posed additional problems. In linewith these

technicaldeficienciesandthehouseholds’expressedprioritiesforlighting,charging

patternsaredominatedbythelamp:mostofthetime,thekitisusedtochargethelamp

(26hoursperweek),followedbyoperatingtheradio(20hours).Itishardlyusedto

chargeacellphone(onlytwohours8).

DuetothetechnicaldrawbacksofthePico‐PVkit,wewillconcentrateinthefollowing

oneffectsrelatedtotheusageofimprovedlightingservice.Virtuallyallkitowning

8Theshareofhouseholdsusingthekitforcellphonechargingisverylowatlessthantenpercent.Thosehouseholds

thatdochargetheirphonewiththekitchargeit19hoursperweek.

householdspredominantlyuseitforlighting.9Somedetailsonradiousage,preferred

programsandotherinformationsourcesareshowninthesupplementalappendix.10

ThePico‐PV lampsaremainlyusedby femaleadults, followedbymaleadults (see

Table4).Childrenusethelampslessfrequently.

Traditional lampusagegoesdown substantially,with 47percent of the treatment

groupusingexclusively thePico‐PV lamp for lightingpurposes.11While treatment

grouphouseholdsuseonaverage0.8traditionallamps(anytype,includingcandles),

controlgrouphouseholdsuse1.4traditionallampsimplyingthatthePico‐PVlamps

havereplacedhalfofthetraditionallightingsources.Treatmenthouseholdsuseabove

allsignificantlylesswicklampsandhand‐craftedLEDlamps,butalsolessready‐made

torches,hurricanelamps,andmobileLEDlamps.Theshareofhouseholdsthatdonot

useanyartificiallightingsource,amountingtoninepercentinthecontrolgroup,still

reachesfivepercentamongtreatmenthouseholds.Theyeitherbelongtothegroupof

non‐compliersortothehouseholdswithtechnicalproblemswiththePico‐PVlamp.

Table4.UsageofPico‐PVKits(ShareofTreatmentHouseholdsinPercent)

9Theonlyexceptionsarefourhouseholdsthatreportedtohavetechnicalproblemswiththelampandcannotuse

itforthisreason.10Itcanbeseenthatradiousagesignificantlyincreasedinthetreatmentgroup,onaverageandacrossalltypesof

householdmembers.Adultslistenabovealltonewsontheradio,whilechildrenlistentomusic.Consequently,

radioissubstantiallymoreoftenthemainsourceofinformationfortreatmenthouseholds.Inthecontrolgroup

communitygatheringsconstitutetypicallyamoreimportantsourceofinformation.

11TableS6.1inthesupplementalappendixshowsacomprehensivepresentationoflampusageinthetreatment

andthecontrolgroup.

Shareoftreatmenthouseholds…

(inparentheses:onlycomplianthouseholds) %

Pico‐PVlampismainlyusedby… %

usingthekitatleastonceaday 86(95) Femaleadult>17yearsold 49

…usingthekitforlighting 85(97) Maleadult>17yearsold 23

…usingthekitforlisteningtotheradio 68(79) Femalebetween12and17yearsold 10

…usingthekitforchargingmobilephones 10(11) Malebetween12and17yearsold 7

…usethebatterypack 65(71) Collectivelyusedbywholefamily 6

Childrenbetweensixand11yearsold 5

Source:Householddataset2012.

Most lampusers are satisfiedwith the lightingqualityof the lamp.More than 70

percentofalllampusersreporttheyare“always”or“often”satisfiedwiththelighting

quality.Only22percentreporttobesatisfiedonlyseldomandsixpercentarenever

satisfied.Satisfaction levelswithtraditional lampsaresubstantially lower.Forwick

lampsandhand‐craftedLEDlamps,94percentand91percent,respectively,reportto

besatisfiedseldomornever.

Sincebothtreatmentandcontrolhouseholdsarelocatedwithinthesamecommunities,

spill‐overeffectsmightoccur.Especiallychildrenoftenmeetandplaywithfriendsand

theremightbepositivespill‐overeffectsonotherhouseholds’children.Ifamongthese

‘other’householdsarehouseholds fromourcontrolgroup, itmayevendownward

bias our impact estimates. Yetwe did not find any evidence for spill‐overs. For

instance,inthecontrolgrouptheshareofchildrenstudyingoutsidetheirhomedid

notincreaseandisnegligibleatlessthanonepercent.Moregenerally,thequalitative

interviewsweconducteddidnotprovideanyindicationforjointactivitiesusingthe

kitsandhencespill‐oversofthatsort.

BudgetEffectsandKeroseneConsumption

Lookingatthepriceperconsumed lightinghourandthepriceperconsumed lumenhour

(Table5),householdsinthecontrolgrouppayapproximatelyfivetimesasmuchper

lightinghourashouseholdsinthetreatmentgroup(950FRWvs.180FRW;1.56USD

vs.0.30USD).Thedifference isobviouslyevenmorepronounced for thepriceper

lumenhour:Ahouseholdinthecontrolgrouppaysseventimesmoreperlumenhour

thanahouseholdinthetreatmentgroup(70FRWvs.9FRW;0.12USDvs.0.02USD).

This reduction in lighting costs effectively translates into a strong increase in the

amountoflumenhoursconsumedperdayintreatedhouseholds,whichismorethantwo

timesashighasincontrol‐grouphouseholds(seeTable5)—reflectingtheverypoor

lightingqualityof traditional lightingsources.Yet,alsowithoutaccounting for the

improved quality of lighting, the Pico‐PV kit leads to an increase in lighting

consumption.Theamountoflightinghoursconsumedperdayissignificantlyhigherin

thetreatmentgroupafterhavingreceivedthePico‐PVlamp.

Table5.PriceandConsumptionofLightingEnergy

Treatment Control ITT p‐value

Costperlightinghour(inFRWper100hours) 176 950 ‐702 .000

Costperlumenhour(inFRWper100hours) 9 70 ‐57 .000

Lightinghoursconsumedperday 4.43 3.85 0.59 .074

Lumenhoursconsumedperday 142 61 78 .000

Note:TheITTdepictsthedifferenceinmeansatthefollow‐upstagebetweenthewholetreatmentandcontrolgroup,

includingalsonon‐complyinghouseholds.Wecontrolforallstratificationandre‐randomizationcharacteristics.

Detailedestimationresultscanbefoundinthesupplementalappendix.ExchangerateasofNovember2011:1USD

=607FRW.

Source:Householddataset2011/2012.

Lookingattotalenergyexpenditure(Table6.ExpendituresperMonthperCategory(inFRW)

Treatment Control ITT

p‐

value

Candles 42 109 ‐20 .339

Keroseneforlighting 155 609 ‐418 .000

Bigbatteries(TypeD) 358 352 ‐9 .750

Smallbatteries(TypeAA) 30 72 ‐43 .003

Mobilephonecharging 407 520 ‐68 .407

Totaltraditionalenergysources(withoutcookingenergy) 993 1,662 ‐557 .000

Totalexpenditures 37,971 31,334 7,249 .276

Shareofenergyexpenditureontotalexpenditures 0.04 0.07 ‐0.03 .001

Note:TheITTdepictsthedifferenceinmeansatthefollow‐upstagebetweenthewholetreatmentandcontrolgroup,

includingalsonon‐complyinghouseholds.Wecontrolforallstratificationandre‐randomizationcharacteristics.

Detailedestimationresultscanbefoundinthesupplementalappendix.ExchangerateasofNovember2011:1USD

=607FRW).

Source:Householddataset2011/2012.

As a consequence, we observe a significant reduction in expenditures for small

batteries, but not for the larger batteries since households use their Pico‐PV kit

predominantlyforlightingbutonlyveryseldomtoruntheirradio.Theconsumption

ofcandlesisalsosignificantlyreduced.Inaddition,wefindamoderatereductionin

expenditures on cell phone charging, although the difference is not significant.

Estimating an ATT only among mobile phone users by employing the random

treatmentassignmentasan instrumentshowsastatisticallysignificantreductionof

costsforphonechargingof1,662FRW(2.74USD).Theaveragehouseholdthatpays

forchargingthemobilephonepays1,400FRWpermonth(2.31USD).

In total,energyexpenditureswithoutcookingenergyare557FRW (0.92USDPPP)

lowerinthetreatmentgroup.Thisdifferenceisstatisticallysignificant.Ifwecompare

this to the total household expenditures it shows the importance of energy

expenditures for thehouseholdbudget:The shareof energy expenditureswithout

cookingdecreasesbythreepercentagepointsfromsevenpercenttofourpercent.

),weobservethathouseholdsspendaroundfivepercentoftheiroverallexpenditures

on kerosene, candles, and dry‐cell batteries. In treated households we expect a

significantdecreaseofexpenditures forkerosene,candlesanddry‐cellbatteries. In

fact,we observe a significant and considerable drop of kerosene expenditures by

almost70percent.Twotypesofdry‐cellbatteriesareusedinoursample,big(TypeD)

andsmall(TypeAA)batteries.Whilemorethan90percentofsmallbatteriesareused

forlighting,morethanthree‐fourthsofbigbatteriesareusedforradios.

Table6.ExpendituresperMonthperCategory(inFRW)

Treatment Control ITT

p‐

value

Candles 42 109 ‐20 .339

Keroseneforlighting 155 609 ‐418 .000

Bigbatteries(TypeD) 358 352 ‐9 .750

Smallbatteries(TypeAA) 30 72 ‐43 .003

Mobilephonecharging 407 520 ‐68 .407

Totaltraditionalenergysources(withoutcookingenergy) 993 1,662 ‐557 .000

Totalexpenditures12 37,971 31,334 7,249 .276

Shareofenergyexpenditureontotalexpenditures 0.04 0.07 ‐0.03 .001

Note:TheITTdepictsthedifferenceinmeansatthefollow‐upstagebetweenthewholetreatmentandcontrolgroup,

includingalsonon‐complyinghouseholds.Wecontrolforallstratificationandre‐randomizationcharacteristics.

Detailedestimationresultscanbefoundinthesupplementalappendix.ExchangerateasofNovember2011:1USD

=607FRW).

Source:Householddataset2011/2012.

As a consequence, we observe a significant reduction in expenditures for small

batteries, but not for the larger batteries since households use their Pico‐PV kit

predominantlyforlightingbutonlyveryseldomtoruntheirradio.Theconsumption

ofcandlesisalsosignificantlyreduced.Inaddition,wefindamoderatereductionin

expenditures on cell phone charging, although the difference is not significant.

Estimating an ATT only among mobile phone users by employing the random

treatmentassignmentasan instrumentshowsastatisticallysignificantreductionof

costsforphonechargingof1,662FRW(2.74USD).Theaveragehouseholdthatpays

forchargingthemobilephonepays1,400FRWpermonth(2.31USD).

In total,energyexpenditureswithoutcookingenergyare557FRW (0.92USDPPP)

lowerinthetreatmentgroup.Thisdifferenceisstatisticallysignificant.Ifwecompare

this to the total household expenditures it shows the importance of energy

expenditures for thehouseholdbudget:The shareof energy expenditureswithout

cookingdecreasesbythreepercentagepointsfromsevenpercenttofourpercent.

12 This difference seems not to be driven by the treatment. The (nonsignificant) difference in total expenditures

had already existed at baseline. Moreover, the different subcategories of expenditures do not show any significant changes over time neither.

HealthandEnvironmentalEffects

The combustionofkerosene is associatedwithharmful emissions that can lead to

respiratory diseases (WHO 2016). Although the relative contribution of kerosene

lamps tohouseholdairpollution is rather lowcompared to firewoodandcharcoal

usageforcookingpurposes,itistheimmediateexposureofpeoplesittingnexttoa

wicklampforaspecifictask(e.g.,studying),thatmakeskeroseneasubstantialhealth

threat(Lametal.2012).

Indeed,inoursamplekerosenelampsareaboveallusedbychildrenforstudyingand

bywomen for cooking. In qualitative in‐depth interviews preceding the baseline

surveymanyhouseholdscomplainedaboutsootykerosenelampsleadingtorecurring

eyeproblemsandkidshavingblacknasalmucus.Wethereforeexaminedtheextent

towhichthedecreaseinkerosenelampusagetranslatesintoaperceivedimprovement

ofairqualityand,potentially, intoadecrease inrespiratorydiseasesymptomsand eye

problems.Atthebaselinestagethejudgementofmosthouseholds(around67percent

inbothgroups)wasthatairqualityintheirhouseswasgood,inthefollow‐upsurvey

45percentoftreatedhouseholdsandonlythreepercentofcontrolhouseholdssaythat

theairqualityintheirhomeshasimprovedincomparisontothebaselineperiod.In

anopenquestion,virtuallyall treatedhouseholdsascribe this improvement to the

Pico‐PVlamp.Lookingatself‐reportedhealthindicators,though,wecannotconfirm

thatthisimprovedairqualityleadstoabetterhealthstatusofthehouseholdmembers,

which isnot surprisinggiven that cooking fuelsare still thedominating sourceof

householdairpollution.13

HouseholdsinnonelectrifiedareasinAfricaareincreasinglyusingdry‐cellbatteries

and LED lamps to light their homes. Therefore, a potential reduction in dry‐cell

batteriesdeservesspecialattentionbecausetheymightcontainharmfulmaterialsand

a proper collection system does not exist. In fact, in our sample 95 percent of

households throwdischargedbatteries into theirpit latrines, that is,nonsealed3–4

meterholesintheirbackyard.Twopercentofthehouseholdscollectthemwiththeir

garbage,and threepercent throw themawaysomewhere in theirbackyard.Hence,

potentiallytoxicsubstancescanbeexpectedtoenterthegroundwater.Theextentto

which thisposesa threat topeople’shealth isunclear,as little isknownabout this

process,neitherinRwandanorelsewhere(seealsoBenschetal.2015).

DomesticProductivityEffects

BuildingonthesubstantialusageofthePico‐PVlampweexaminetheextenttowhich

thisinducesapotentialgainindomesticproductivity.Forthispurpose,welookatthe

mainusers’activitiesexercisedwhenusingthePico‐PVlampand—inordertoassess

the extent of the quality improvement—which lighting sources are used among

householdsinthecontrolgroupfortherespectiveactivity.

ThemostfrequentusersofthePico‐PVlamparefemaleadults,ofwhich87percent

usethelampmainlyforhousework(seeTable7).Houseworkdonebywomenrefers

13Seesupplementalappendix,TableS6.2,formoredetailedresults.

abovealltocookingbutalsoincludes,forexample,childcaring,preparingthebeds

beforegoingtosleep,andrepairingclothes.ThePico‐PVlampreplacesaboveallwick

lampsand isusedbyfemaleadultsthathadnotbeenusinganyparticular lighting

devicebefore.14Maleadultsalsousethelampmostlyforhousework,althoughthese

aremorediverseactivitiesthanforwomen.Formaleadults,thePico‐PVlampreplaces

wicklamps,ready‐madetorches,andhand‐craftedLEDsandisalsousedbymenwho

hadnotusedanyartificiallightingdevicebeforeforhouseworkactivities.

Table7.ActivityUsingPico‐PVLamp,AdultsandChildreninTreatmentHouseholds(%)

FirstActivity SecondActivity ThirdActivity

Femaleadult>17yearsold N=149 Housework 87 Study 5 Eat 4

Maleadult>17yearsold N=60 Housework 71 Recreation 10 Study 10

Children6to17yearsold N=56 Study 75 Housework 16 Recreation 4

Note:Informationonactivitiesstemfromanopenquestionamongtreatmenthouseholdsatfollow‐up,askingfor

themainactivitiesthedifferentlampusersareexercisingwhileusingthelamp.

Source:Householddataset2011/2012.

Table8showsthathouseworkisdoneprimarilyduringdaytime,alsointhetreatment

group, and the total time dedicated to domestic work per day does not change

significantly. The total time household members are awake per day does not change

significantly,either.ThisrevealsthatthePico‐PVlampisalsousedduringdaytimefor

housework activities,which is in linewith observationsmade during qualitative

14Weanalyselampswitchingbycomparinglampsusedforthecorrespondingactivitiesbytreatmentandcontrol

households.Detailedresultsoftheanalysiscanbefoundinthesupplementalappendix,TableS6.3.

interviews:thetypicalRwandandwellingisquitedarkevenduringthedaytimeand

peoplesometimesuseartificiallightingintheirhomes.TotheextentthePico‐PVlamp

replacesa traditional lightingsource for theirdaytimehouseworkactivity, lighting

qualityclearlyimproves.Yet,peoplemightalsorelocateoutsideactivitiesindoorsand

replacenaturaldaylightby thePico‐PV lamp. In this case, lightingqualitywould

probablynot improve,butstill itdemonstratesthehigherflexibilitypeoplehave in

organizingtheirdailytasks.

Table8.DailyTimeAwake,TimeSpentonDomesticLaborandAnyIncomeGenerating

Activity

Treatment Control ITT p‐value

Timeawake

Headofhousehold 14h28 14h27 0h05 .739

Spouse 14h46 14h36 0h11 .378

Domesticlabor

Headofhousehold,total 2h08 2h10 ‐0h01 .950

Headofhousehold,afternightfall 0h16 0h12 0h04 .542

Spouse,total 2h48 2h30 0h16 .333

Spouse,afternightfall 0h32 0h31 0h02 .779

Any income generating activity of subsistence

farmers

Headofhousehold,total 5h37 5h29 0h21 .215

Headofhousehold,afternightfall 0h01 0h01 0h00 .823

Spouse,total 5h37 5h25 0h10 .354

Spouse,afternightfall 0h00 0h01 0h00 .462

Note:TheITTdepictsthedifferenceinmeansatthefollow‐upstagebetweenthewholetreatmentandcontrolgroup,

includingalsonon‐complyinghouseholds.Wecontrolforstratumdummiesandre‐randomizationcharacteristics.

Detailedestimationresultscanbefoundinthesupplementalappendix.

Source:Householddataset2011/2012.

Moreover, Table 8 probes into the questionwhether time dedicated to any income

generating activity increases, which might happen because the higher domestic

productivitycouldsetfreetimeforotherpurposes.Weconcentrateouranalysison

subsistencefarmersthatconstitute86percentofhouseholdheadsand85percentof

spousesatbaseline.15Boththeheadofhouseholdandthespouseslightlyincreasethe

timetheydedicatetoincomegeneration(bysixandthreepercent,respectively),but

thisdifferenceisnotstatisticallysignificant.

Thethirdmostimportantusergrouparechildrenbetweensixand17years.Theyuse

thePico‐PVlampmainlyforstudying(seeTable7).Inordertounderstandchangesin

the productivity of studying at home, we first need to analyze children’s study

patternsandhowtheydividetheirstudytimebetweendaylighttimeandevening.

AscanbeseeninTable9,inaroundone‐thirdofthehouseholdswithchildrenatschool

age, childrendonot study after school.There isno significantdifferencebetween

householdsinthecontrolandtreatmentgroups.Theshareofchildrenstudyingafter

15 We distinguish as income generating activities between subsistence farmers, governmental employees,

independentoccupations,andotherdependentoccupations.Thegroupsizesofthelatterthreearesmallatn=2,

n=1, and n=2 for spouses andn=4,n=11, and n=9 forhead ofhouseholds.Therefore, these groups are very

unbalancedacrosstreatmentandcontrolhouseholdsatbaseline(seeTableS6.4inthesupplementalappendix).

Whenestimatingeffectsontimededicatedtoincomegenerationincludingtheseoccupationgroups,wefinda

significantpostiveeffectforoverallincomegenerationtimeforspouses.Thisdifferenceisdriven,however,by

thesenon‐balancedsub‐groupsandcanthusnotbeinterpretedasaneffect.

nightfall,though,issignificantlyhigherinthetreatedgroup.Thetotalstudytime,that

is,afternightfallandduringdaytime,increasesonlyformaleprimaryschoolchildren.

Femaleprimaryschoolchildrenjustshifttheirstudytimefromafternoonhourstothe

evening leading to an increase in study time after nightfall. For secondary school

childrenwedonotobserveanysignificantchanges.Hence,thePico‐PVkitsbenefit

primarilyyoungerchildren.Besidestheincreaseoftotalstudytimeforprimaryschool

boys,itseemstoincreasetheflexibilityingirl’stimeallocation,althoughwedonot

detectwhethertheyusethefreedtimeduringthedayfordomesticworkorrecreation.

Inanycase,atleastforthosechildrenwhousedwicklampsbefore,thelightingand

airqualityincreases.

Table9.StudyPattern(OnlyHHwithChildrenatSchoolAge;6–17years)

N Treatment Control ITT p‐value

Share of HH with children studying after

school

209 67 61 5 .369

Share of HH with children studying after

nightfall

209 26 14 14 .006

Dailystudytimeafterschool(inminutes)

malechildren6‐11,total 100 0h37 0h26 0h13 .009

malechildren6‐11,afternightfall 100 0h29 0h12 0h12 .045

femalechildren6‐11,total 92 0h51 0h30 0h12 .533

femalechildren6‐11,afternightfall 92 0h27 0h11 0h11 .090

malechildren12‐17,total 89 1h01 0h54 0h21 .191

malechildren12‐17,afternightfall 89 0h50 0h32 0h14 .382

femalechildren12‐17,total 94 1h02 0h58 0h10 .327

femalechildren12‐17,afternightfall 94 0h44 0h37 0h10 .191

Note:TheITTdepictsthedifferenceinmeansatthefollow‐upstagebetweenthewholetreatmentandcontrolgroup,

includingalsonon‐complyinghouseholds.Wecontrolforallstratificationandre‐randomizationcharacteristics.

Detailedestimationresultscanbefoundinthesupplementalappendix.

Source:Householddataset2011/2012.

Altogether,we observe an effect of Pico‐PV kit ownership on time dedicated to

domesticactivitiesonly in thecaseofstudy timeofprimaryschoolboys.Forother

Pico‐PVusers,weonlyobserveahigherflexibilityinorganizingtheirdomesticduties.

Moreover, it is plausible to expect that the improved lighting also increases the

effectivenessofthetasksitisusedfor.Quantifyingthiseffectisbeyondthescopeof

ourstudy,though.Atleastforthecaseofstudents’schooltest‐scorestheFurukawa

(2014) results advise some caution inmaking hasty statements about improving

learningoutcomesbasedonlongerstudytimesandbetterlight.16

Conclusion

Our resultsshow that simplebutqualityverifiedPico‐PVkits in factconstitutean

improvementcomparedtothebaselineenergysources,mostlydry‐cellbatteriesand

kerosene.Given the small sizeof thepanel, thechargingcapacity isobviouslynot

abundantly available, andmany households did notmanage to use the panel for

chargingtheradioandmobilephones;lightingturnedouttobethemostoftenused

16RememberthatFurukawa(2014)observesevenadeclineofschoolchildren’stestscoresinspiteofanincreasein

studytimeinanRCTusingsolarlanternsinUganda.Oneexplanationforthispuzzlingoutcomeheprovidesis

thepotentiallybadlightingqualityofthesolarlamp.Inourcase,wehavenoindicationforsuchabadlighting

qualityandwebelievethiswouldhavebeendisclosedinthevariousqualitativeinterviewsweconducted(in

whichmanyotherproblemswerediscussedprettyopenly,seeSectionIV).

service.Intheseremoteandpoorareas, lighting isascarcegoodandthe lampwas

indeed intensively used by virtually all treatment group households leading to

increasesinboththequalityandthequantityoflightingusage.

The most important finding of our study is that total energy expenditures and

expenditures fordry‐cellbatteriesandkerosenegodownconsiderably.Thisshows

thatbeneficiariessubstitutetraditionalenergysourcesinsteadofjustincreasingtheir

energyconsumption.Beyondthedirecteffectthishasonhouseholdwelfare,theusage

of the lamp also implies social returns. It induces advantages for people’s health

because kerosene usage is associated with harmful smoke emissions and the

environmentbecausedry‐cellbatteriesareusuallydisposedofinunprotectedlatrines

or in the landscape. Since households in rural Sub‐Saharan Africa are rapidly

switchingfromkeroseneorcandlestoLED‐lampsthatrunondry‐cellbatteriesthis

findingdeservesparticularattention.

In addition,we find thatbeneficiariesuse thekit forvariousdomesticproduction

activitieslikecookingorstudying.Althoughwecannotquantifythebenefits,evidence

fromtheliteraturestronglysuggeststhatthesolarlampallowsdoingtheseactivities

betterandfasterthanwithtraditionallightingsources,whichplausiblyresultsinan

overallincreaseindomesticoutput.Thesolarlampalsoenableshouseholdstoallocate

theirtimemorefreelyandtoshiftactivitiestowardtheeveninghours.Schoolchildren,

forexample,findbetterandmoreflexiblestudyingconditionsthankstotheimproved

lighting source.Even if thisdoesnot lead toan immediatemeasurable increase in

domesticoutput,pursuingtheactivitieswithbetterlightandinamoreflexibleway

willatleastreducetheeffortthatisneededtoundertakehouseholdchores.Thiswould

stillbeanimportantimprovementofhousehold’slivingconditions.

Whileultimatepovertyimpactson,forexample,incomeoreducationalinvestments

mightbesmallcomparedtoproductivitygainsassociatedwithbiggerinfrastructure

interventions, these effects are still considerable from the poor’s perspective,

particularlyhavinginmindthelowinvestmentcostsoftheinterventionat30USDper

kit.

Our resultshence substantiate theTier‐1‐thresholdofmodernenergyaccess in the

SE4AllGlobalTrackingFramework.ThePico‐PVkitscan in factmeet theneed for

basicenergyservices inpoorareaswhereenergyconsumption isstillatavery low

level.Yet,comparingourfindingstomoreadvancedregionsandlargerinterventions,

suchasgridextension, italsobecomesevident thatPico‐PVkitscannot satisfy the

wholeportfolioofenergydemand(Lenzetal.2016).Hence,inmanynotsoremote

areasPico‐PVkitscanbeconsideredaseitheracomplementtoagridconnectionfor

backuppurposesorasabridgingtechnologytowardagridconnectionatalaterpoint

intime.Forverypoorareasintheperipheryofacountryasstudiedinthispaper,in

contrast,Pico‐PVisinmanycasestheonlyoptiontoobtainmodernenergybecause,

first,theseregionsarebeyondthereachoftheelectricitygridformanyyearstocome

and, second, other off‐grid solutions such as larger solar home systems are too

expensive.We thereforeargue thathouseholds in such remoteareasare themajor

targetgroupofTier1energysystemswithintheSE4Allinitiative.

Whatiscrucialfortheacceptanceofthisnewtechnologyistheproperfunctioningand

easeinusageofthekit—inparticulariftheobjectiveistosetupamarketaspursued

byprogramslikeLightingAfrica.Ithasturnedoutthatarelativelymatureproduct

suchasthePico‐PVkitusedinthisstudy,ofwhichtheprincipalcomponentshadbeen

testedandcertifiedbyLightingAfricaaswellasmassivelysold inothercountries,

mightstillexhibittechnicalproblemsunderrealusageconditions.Thisisinlinewith

findingsofFurukawa(2014)whoobservesthatinsufficientchargingunderrealusage

conditionsledtoflickeringlightquality.Testingandcertificationproceduresaswell

asthedevelopmentofcomprehensibleusageguidelinesshouldthereforeencompass

a strong component of field tests and not only laboratory examinations. This is

particularlyimportantinthelightoftherapidpenetrationofruralAfricawithnon‐

brandedLEDlampsthathasoccurredinrecentyears(seeBenschetal.2015).Interms

oflightingquality,thesedry‐cellbattery‐runlampsareonaparwithPico‐PVkits.

Nonetheless,Pico‐PVkitsthatmeetqualitystandardsintermsofusabilityandlifetime

areaworthwhileinvestment.Ifkeroseneordry‐cellbatteriesarereplaced,households

withconsumptionpatternsasobserved inour researcheconomizeonaverage0.95

USD PPP per month, which is around two percent of monthly household

expenditures.TheinvestmentintothePico‐PVkitthenpaysoffafter18months,which

islessthanitslife‐spanof2–3years,buttheinterplayofcashandcreditconstraints,

thelackofinformation,andhighdiscountrateswillmakemosthouseholdsforegothis

investment.

ThisclaimpointsatadilemmaofLightingAfricaandotherdonorandgovernmental

interventions,whichintendtodisseminatePico‐PVkitsviasustainablemarketsasa

contributiontoSE4All:Themajortargetpopulationwillhardlybeabletobringupthe

requiredinvestment.Financingschemesmightinsomeregionsbeanobvioussolution.

But given the long pay‐off period for the bottom of the income distribution and

noninternalizedadvantages,suchfinancingschemesareprobablynoteffective.Atthe

sametime,ifitisclearlythepoliticalwillbothinnationalgovernmentsandamongthe

international community to provide electricity also to the very poor, one should

considermoredirectpromotionoptions.Subsidizedorevenfreedistributionofkits

mightthenbeanalternativetoreachthepoorestofthepoor.Whilemanydevelopment

practitionersareopposedtoafreedistributionpolicyanditwouldbeinstarkcontrast

tothestrategiespursuedbyongoingdisseminationprograms,theempiricalliterature

provides evidence from other field experiments that supports such an approach

(KremerandMiguel2007;CohenandDupas2010;Tarozzietal.2014;Benschand

Peters2015).Asamatterofcourse,a subsidizeddistributionpolicywould require

establishing institutions thatmaintain the subsidy scheme including an effective

systemformaintenanceandreplacementofbrokenkitsinordertoensurelong‐term

sustainability.Moreover,sincesubsidieswouldrequirepublicfunds,thepriorityof

the SE4Allgoalwould obviouslyneed tobepondered againstotherdevelopment

objectives.

Havingsaidthis,itisalsoclearthatfurtherexperimentalstudiesthatcanexaminethe

mechanismsbehindtake‐upbehavior,suchasthehouseholds’willingness‐to‐payfor

electricenergy,theroleofcreditconstraints,andinformationarecertainlyuseful.Such

researcheffortswouldhelptodesignappropriateleast‐coststrategiestoachievethe

modern“energy‐for‐all‐goals”oftheinternationalcommunity.

REFERENCES

Barron,M.,andM.Torero.2014.“ElectrificationandTimeAllocation:Experimental

EvidencefromNorthernElSalvador.ʺMPRAPaper63782,UniversityLibraryof

Munich,Germany.

———. 2015. ʺHousehold Electrification and Indoor Air Pollution.ʺMPRA Paper

61424,UniversityLibraryofMunich,Germany.

Begemann,S.H.A.,G.J.vandenBeld,andA.D.Tenner.1997.“Daylight,ArtificialLight

and People in an Office Environment, Overview of Visual and Biological

Responses.”InternationalJournalofIndustrialErgonomics3:231–39.

Bensch, G., and J. Peters. 2015. ʺThe IntensiveMargin of Technology Adoption:

ExperimentalEvidenceonImprovedCookingStovesinRuralSenegal.ʺJournalof

HealthEconomics42:44–63.

Bensch,G.,J.Peters,andM.Sievert.2013.“FearoftheDark?HowAaccesstoElectric

LightingAffects SecurityAttitudes andNighttimeActivities inRural Senegal.”

JournalofRuralandCommunityDevelopment8(1):1–19.

———. 2015. “The Lighting Transition inAfrica: FromKerosene to LED and the

EmergingDry‐CellBatteryProblem.”(No.579).Essen:RuhrEconomicPapers.

Bensch,G.,J.Kluve,andJ.Peters.2011.“ImpactsofRuralElectrificationinRwanda.”

JournalofDevelopmentEffectiveness3(4):567–88.

Bernard, Tanguy. 2012. “Impact Analysis of Rural Electrification Projects in Sub‐

SaharanAfrica.”WorldBankResearchObserver27(1):33–51.

Bertrand, J.T.,K.OʹReilly, J.Denison,R.Anhang,andM.Sweat.2006.“Systematic

Review of the Effectiveness of Mass Communication Programs to Change

HIV/AIDS‐relatedBehaviors inDevelopingCountries.”HealthEducationResearch

21(4):567–97.

Boyce,P.R.,J.W.Beckstead,N.H.Eklund,R.W.Strobel,andM.S.Rea.1997.“Lighting

theGraveyardShift:TheInfluenceofaDaylight‐SimulatingSkylightontheTask

PperformanceandMoodofNightShiftWorkers.”LightingResearchandTechnology

29(3):105–34.

Brainard,G.C.,J.P.Hanifin,J.M.Greeson,B.Byrne,G.Glickman,E.Gerner,andM.D.

Rollag.2001.“ActionSpectrumforMelatoninRegulationinHumans:Evidencefor

aNovelCircadianPhotoreceptor.”JournalofNeuroscience21(16):6405–6412.

Cohen, J.,andP.Dupas.2010.“FreeDistributionorCost‐Sharing?Evidence froma

RandomizedMalariaPreventionExperiment.”Quarterly JournalofEconomics125

(1):1–45.

DauratA,AguirreA,ForetJ,GonnetP,KeromesA,andBenoitO.1993.“Bright

LightAffectsAlertnessandPerformanceRhythmsduringa24‐hourConstant

Routine.”PhysicsandBehaviour53(5):929–36.

Dinkelman, T. 2011. “The Effects of Rural Electrification on Employment: New

EvidencefromSouthAfrica.”AmericanEconomicReview101(7):3078–108.

Dupas, P 2014. ʺShort‐Run Subsidies and Long‐Run Adoption of New Health

Products:EvidencefromaFieldExperiment.ʺEconometrica82(1):197–228.

Furukawa,C.2014.“DoSolarLampsHelpChildrenStudy?ContraryEvidencefroma

PilotStudyinUganda.”JournalofDevelopmentStudies50(2):319–41.

Grogan,L.,andA.Sadanand.2013.“RuralElectrificationandEmployment inPoor

Countries:EvidencefromNicaragua.”WorldDevelopment43:252–65.

Grunberger,J.,L.Linzmayer,M.Dietzel,andB.Saletu.1993.“TheEffectof

BiologicallyActiveLightontheNoo‐andThymopsycheonPsycho‐physiological

VariablesinHealthyVolunteers.”InternationalJournalofPsychophysiology15(1):

27–37.

IEA.2011.WorldEnergyOutlook2011.Paris.

Jensen,R.,andE.Oster.2009.“ThePowerofTV:CableTelevisionandWomen’sStatus

inIndia.”QuarterlyJournalofEconomics124(3):1057–94.

Khandker,ShahidurR.,DouglasF.Barnes,andHussainA.Samad.2012.“TheWelfare

ImpactsofRuralElectrificationinBangladesh.”EnergyJournal33(1):187–206.

Khandker,ShahidurR.,DouglasF.Barnes,andHussainA.Samad.2013.“Welfare

ImpactsofRuralElectrification:APanelDataAnalysisfromVietnam.”Economic

DevelopmentandCulturalChange61(3):659–92.

Kremer,M.,andE/Miguel.2007.“TheIllusionofSustainability.”QuarterlyJournalof

Economics122(3):1007–65.

Kuller,R.,andT.Laike.1998.ʺTheImpactofFlickerfromFluorescentLightingon

Well‐Being,PerformanceandPhysiologicalArousal.ʺJournalofErgonomics41(4):

433–47.

Kuller,R.,andL.Wetterberg.1993.ʺMelatonin,Cortisol,EEG,ECGandSubjective

ComfortinHealthyHumans:ImpactofTwoFluorescentLampTypesatTwo

LightIntensities.”LightingResearchandTechnology25(2):71–80.

Lenz, L., A. Munyehirwe, J. Peters, and M. Sievert. 2016. “Does Large Scale

Infrastructure Investment Alleviate Poverty? Impacts of Rwanda’s Electricity

AccessRoll‐OutProgram.”WorldDevelopment,forthcoming.

LaFerrara,E.,A.Chong,andS.Duryea.2012.“SoapOperasandFertility:Evidence

fromBrazil.”AmericanEconomicJournal:AppliedEconomics4(4):1–31.

Lam,N.L.,K.R.Smith,A.Gauthier,andM.N.Bates.2012.“Kerosene:AReviewof

Household Uses and Their Hazards in Low‐ andMiddle‐Income Countries.”

JournalofToxicologyandEnvironmentalHealth,PartB15(6):396–432.

Lange,H.1999.HandbuchfürBeleuchtung,SLG,LiTG,LTG,NSVV,5.Auflage,ecomed

SICHERHEIT.LandsbergamLech.

Lighting Global. 2016. Off‐Grid SolarMarket Trends Report 2016, Bloomberg New

Energy Finance and Lighting Global in cooperation with the Global Off‐Grid

LightingAssociation(GOGLA).

Lipscom M., M. Mobarak, and T. Barham. 2013. “Development Effects of

Electrification:EvidencefromtheTopographicPlacementofHydropowerPlants

inBrazil.”AmericanEconomicJournal:AppliedEconomics5(2):200–231.

MININFRA.2016.RuralElectrificationStrategy.April2016.MinistryofInfrastructure,

RepublicofRwanda.Kigali.

O’Sullivan,K.,andD.F.Barnes.2006.“EnergyPoliciesandMultitopicHousehold

Surveys.GuidelinesforQuestionnaireDesign inLivingStandardsMeasurement

Studies.”EnergyandMiningSectorBoardDiscussionPaper(17).

Partonen,T.,andJ.Lönnqvist.2000.“BrightLightImprovesVitalityandAlleviates

DistressinHealthyPeople.”JournalofAffectiveDisorders57(1–3):55–61.

Peters,J.,andM.Sievert.2016. “ImpactsofRuralElectrificationRevisited:The

AfricanContext.”JournalofDevelopmentEffectiveness,forthcoming.

Samad,HussainA.,ShahidurR.Khandker,M.Asaduzzaman,andM.Yunus.2013.

“TheBenefitsofSolarHomeSystems:AnAnalysisfromBangladesh.”WorldBank

PolicyResearchWorkingPaperNo.6724,WorldBank,WashingtonD.C.

Sievert,M.2015.“RuralElectrificationandDomesticViolenceinSub‐SaharanAfrica.”

RWIWorkingPaperNo.570.

SustainableEnergyforAll(SE4All).2013.SustainableEnergyforAllGlobalTracking

Framework Consultation Document. http://www.se4all.org/tracking‐progress/

[AccessedSeptember10,2014].

SustainableEnergyforAll(SE4All).2015.SustainableEnergyforAllGlobalTracking

Framework Consultation Document. Retrieved from:

http://www.se4all.org/tracking‐progress/.

Tarozzi,A.,A.Mahajan, B. Blackburn,D.Kopf, L.Krishnan, and J.Yoong. 2014.

“Micro‐loans, Insecticide‐Treated Bednets, and Malaria: Evidence from a

Randomized Controlled Trial in Orissa, India.” American Economic Review 104

(7):1909–41.

United Nations. 2005. The Energy Challenge for Achieving the Millennium

DevelopmentGoals.NewYork.

———.2010.Energy foraSustainableFuture.ReportandRecommendations.New

York.

vandeWalle,D.,M.Ravallion,V.Mendiratta,andG.Koolwal.2016.“Long‐Term

Gains from Electrification in Rural India.” World Bank Economic Review,

forthcoming.

WHO.2016.BurningOpportunity:CleanHouseholdEnergyforHealth,Sustainable

Development,andWellbeingofWomenandChildren.Washington,D.C.:World

HealthOrganization.

Wilkins,A.J.,I.Nimmo‐Smith,A.Slater,L.Bedocs.1989.ʺFluorescentLighting,

HeadachesandEyestrain.ʺLightingResearchandTechnology21(1):11–18.

WorldBank.2009.“UnitCostsofInfrastructureProjectsinSub‐SaharanAfrica.”Africa

InfrastructureCountryDiagnostic,BackgroundPaperNo.11,WorldBank,Washington

D.C.

A First Step up the Energy Ladder? Low Cost Solar Kits and

Household’sWelfareinRuralRwanda

SupplementalAppendix

AppendixS1:Productivityeffectsassociatedwithlighting 46

AppendixS2:RCTImplementation 48

AppendixS3:Contractforlotterywinners 52

AppendixS4:ExternalValidityofresults 53

AppendixS5:RadioUsage 56

AppendixS6:Additionaltables 59

AppendixS7:Fullregressionresultsoftablesinmaindocument 66

AppendixS1:Productivityeffectsassociatedwithlighting

Sincethevisualperformanceofhumansstronglyincreaseswiththelightinglevel(Brainardet

al.2001),weassumethatthelaborproductivityinperformingtheseactivitiesincreaseswith

thequantityandqualityoflight.Withhighquantityandqualityoflight,activitiescanbedone

fasterandwithmoreprecision,andhenceoutput increases.Productivity in fineassembly

workforinstancehasbeenshowntoincreaseby28%asthelightinglevelincreasesfrom500

to1500lm(Lange1999).Butevenincreasingthelightinglevelfrommuchlowerlevelscomes

withsignificantproductivityeffects.Evidencecomesforinstancefromweavingmills(Lange

1999).Theliteraturealsoshowsthatlighthasastimulatingeffectontheworkmood(Kuller

andWetterberg1993;Boyceetal.1997;PartonenandLönnqvist2000).Italsohelpstoavoid

accidentsasalertnessincreaseswithlight(Dauratetal.1993).Studieshavealsoshownthat

theuseofhigherlightinglevelshelpstocopewithfatigue(Dauratetal.1993;Grunbergeret

al.1993;Begemannetal.1997).Moreover,Wilkinsetal.(1989)showthatworkinginpooror

lowqualitylighting,peoplecansuffereyestrainwhichagainresultsinpoorerperformance

andisoftenaccompaniedbyheadaches.Headachesandstressinpeoplearealsocausedby

lampflicker(KullerandLaike1998).Theliteratureattributesgoodqualitylightingtodevices

thatprovidesufficientlightatthevisualtask,gooduniformityofthelightingoverthewhole

taskarea,balancedluminousdistributionthroughouttheroom,alightinginstallationwithout

glare,goodcolorrenderingandappropriatelightcolor,andlightingwithoutflicker(Lange

1999).

References

Begemann,S.H.A.,G.J.vandenBeld,andA.D.Tenner.1997.“Daylight,artificiallightandpeopleinan

office environment, overview of visual and biological responses”, International Journal of Industrial

Ergonomics,3,231–239.

Boyce,P.R.,J.W.Beckstead,N.H.Eklund,R.W.Strobel,M.S.Rea.1997.“Lightingthegraveyard‐shift:

the influence of a daylight‐simulating skylight on the task performance andmood of night shift

workers”,LightingResearchandTechnology,29(3),105‐134.

Brainard,GeorgeC., John P.Hanifin, JeffreyM.Greeson, BrendaByrne,GenaGlickman, Edward

Gerner,andMarkD.Rollag.2001.“Actionspectrumformelatoninregulationinhumans:Evidencefor

anovelcircadianphotoreceptor”,JournalofNeuroscience,21(16):6405‐6412.

DauratA,AguirreA,ForetJ,GonnetP,KeromesA,BenoitO.1993.“Brightlightaffectsalertnessand

performancerhythmsduringa24‐hourconstantroutine”,Physicsandbehaviour,53(5):929‐36.

Grunberger,J.,L.Linzmayer,M.Dietzel,B.Saletu.1993.“Theeffectofbiologicallyactivelightonthe

noo‐ and thymopsyche on psycho‐physiological variables in healthy volunteers”, Int. J. of

Psychophysiology,15(1):27‐37.

Kuller,R.andT.Laike.1998.̋ Theimpactofflickerfromfluorescentlightingonwell‐being,performance

andphysiologicalarousal.ʺJournalofErgonomics,41(4):433‐47.

Kuller,R.andL.Wetterberg.1993.ʺMelatonin,cortisol,EEG,ECGandsubjectivecomfortinhealthy

humans:impactoftwofluorescentlamptypesattwolightintensities.”LightingResearchandTechnology,

25(2)71‐80.

Lange, Horst. 1999. Handbuch für Beleuchtung, SLG, LiTG, LTG, NSVV, 5. Auflage, ecomed

SICHERHEIT.LandsbergamLech.

Partonen,T.andJ.Lönnqvist.2000.“Bright light improvesvitalityandalleviatesdistress inhealthy

people.”JournalofAffectivedisorders,57(1‐3):55‐61.

Wilkins,A.J.,I.Nimmo‐Smith,A.Slater,L.Bedocs, ʺFluorescentlighting,headachesandeyestrain.ʺ,

LightingResearchandTechnology,21(1):11‐18.

AppendixS2:RCTImplementation

The RCT for this studywas conducted betweenNovember 2011 and July 2012 in close

cooperationwiththeRwandansurveycompanyIB&CandtheRwandanEnergyWaterand

SanitationAuthority(EWSA).IB&CteammembersandEWSAstaffwereincludedatallstages

oftheplanningandimplementationprocess.InNovember2011,wedidapreparationmission

toselecttheregionsinwhichtheRCTshouldbeimplemented.Inordertomimictheeffects

Pico‐PVkitswouldhaveontheirultimatetargetpopulation–householdsbeyondthereachof

theelectricitygridanditsextensions–weselected15remotecommunitiesequallydistributed

acrossfourdistrictsintheperipheryofthecountry(seeFigureS2.1).Thecommunitiesdonot

bordereachother.AccordingtoRwandansolarexperts,theseregionsshowamediumsolar

radiationlevelwithayearlyaverageof5.5hoursofsunlightperday.Alsointhe(cloudier)

rainyseasontheradiationlevelistypicallyenoughforthePico‐PVkittoproducesufficient

electricity.Inordertoavoidtreatmentcontamination,noneofthefewregionswereselected

inwhichPico‐PVkitswerealreadyavailable.17

FigureS2.1:Mapofsurveyregions

Source:OwnrepresentationbasedonmapprovidedbyREG.

Together with IB&C we conducted a baseline survey among 300 randomly sampled

households inDecember 2011. The baseline datawas used to build strata of comparable

householdswith regards to theconsumed lightinghoursperday,usageofmobilephones

17Foradiscussionoftherepresentativenessoftheseruralcommunities,pleaserefertothesectiononexternal

validityinthesupplementalappendix,SectionS4.

(binary),radiousage(binary),anddistrict.Wethenrandomizedthetreatmentwithinthe48

strataresultingfromthisstratificationandadditionallyappliedaminmaxt‐statmethodfor

furtherimportantbaselinecriteria(seeBruhnandMcKenzie2009).18Fortheimpactanalysis,

we include stratum dummies according to our stratification process and control for all

householdcharacteristicsusedforre‐randomization.

A fewdays after the baseline survey, thePico‐PV lampsweredelivered to the randomly

selectedhouseholds.Thosehouseholdsassignedtothecontrolgroupreceivedacompensation

(onebottleofpalmoilanda5kgsackofricewortharound7USD)inordertoavoidresentment

amongthevillagers.ThePico‐PV“winners”furthermorewereinstructedonhowtousethe

kit.Thisinstructionwasconductedbystaffmembersoftheorganizationthatmarketedthe

Pico‐PVkitinotherregionsandwhoarehencealsoresponsibleforinstructingrealcustomers

thatbuyakitataregularsalesman.

Since the surveywas embedded into abroader setof evaluation studies in theRwandan

energysectoronotherongoinginterventionsindifferentareasofthecountry,itwaspresented

asageneralsurveyonenergyusageandnotasastudyonPico‐PVorlightingusage.Neither

treatmentnorcontrolgroupmemberswereinformedabouttheexperiment.Anofficialsurvey

permissionissuedbytheRwandanenergyauthoritywasshowntobothlocalauthoritiesand

theinterviewedhouseholds.BoththePico‐PVkitandthecontrolgroupcompensationwere

presented toparticipantsnotasagift,butasa reward forparticipation in the survey.We

conductedtherandomizationinourofficeusingthedigitalizedbaselinedata.Localauthorities

aswellasthefieldstaffofIB&Cwereonlyinformedonthefinalrandomizationresults.

FigureS2.2:Participantsflow

18 SeeAshrafetal.(2010)foranapplicationofthiscombinedstratifiedre‐randomizationapproach. All

balancingcriteriaarehighlightedinTable2and3ofSection5.1.

Source:ownillustrationinaccordancewithguidelinesprovidedinBOSE(2010)

Giventhehighpovertyratesintheregion,ourlocalpartnersassessedtheriskofhouseholds

selling the Pico‐PV kit to be fairly high. Since it was our ambition to mimic a policy

interventioninwhichbasicenergyservicesareprovidedforfreetoallhouseholds(andthus

potentials tosell thekitswouldbereducedconsiderably)we tried toavoid this.Our local

researchpartnersaddressedthisriskbypreparingashortcontracttobesignedbythedistrict

mayorsandthewinnersthatobligedthewinnersnottosellthePico‐PVsystem(seeOnline

Appendix).Thegovernmentalauthorityiswellrespectedalsoinremoteareasofthecountry

andRwandansgenerallytendtocomplywithformalagreements.Atthesametimewewere

assuredthatsuchaprocedurewouldnotinduceirritationsinthevillages.Amonitoringvisit

amongallwinnerseachtwomonthswasconductedtoensuretheproperfunctioningofthe

Pico‐PVsystemsandmayremindthewinnersoftheircommitmentnottosellthesystems.

Sixmonthsaftertherandomizationwerevisitedthe300householdsforthefollow‐upsurvey.

Exceptfortwo,allhouseholdsinterviewedduringthebaselinecouldberetrievedgivingusa

fairlylowattritionrateofonly1percent.Alsocomplianceturnedouttobehighwithonly18

householdsthatdeclaredtheirPico‐PVkittobesold,lostorstolen(itcanbesuspectedthat

also the lostandstolenonesweresold in fact).Onehouseholdgot thekitonlyduring the

follow‐up, since the household had been absent duringmultiple delivery attempts after

baseline.TheparticipantflowisvisualizedinFigureS2.2.

References

Ashraf,Nava, JamesBerry,and JesseM.Shapiro.2010.“CanHigherPricesStimulateProductUse?

EvidencefromaFieldExperimentinZambia.”AmericanEconomicReview,100(5):2383–413.

Bose,Ron.2010.“AChecklistfortheReportingofRandomizedControlTrialsofSocialandEconomic

Policy Interventions inDeveloping countries:CEDEVersion 1.0.”WorkingPaperNo. 6.NewDelhi:

InternationalInitiativeforImpactEvaluation.

Bruhn,Miriam and DavidMcKenzie. 2009. “In Pursuit of Balance: Randomization in Practice in

DevelopmentFieldExperiments.”AmericanEconomicJournal:AppliedEconomics,1(4):200–32.

AppendixS3:Contractforlotterywinners

AGREEMENT OF COOPERATION (translated from Kinyarwanda) Between……………………………………..Representative of RWI/ISS And the beneficiary of solar kits:

-Name: ………………………..... -Phone number: ……………………….... -Code of household: ………………………....

-Village ……………………….... -Cell: ……………………….... -Sector: ……………………….... -District: ……………………….... -Province: ……………………….... Article 1: This agreement concerns the cooperation between RWI/ISS and beneficiaries of solar kits during research on impact of electricity on living conditions of beneficiaries. Article 2: The Agreement is valid for one year from the date of signature. Article 3: RWI/ISS’s responsibilities:

To offer beneficiaries solar kits freely (solar kits consist of 1. solar panel, 2. lamp, 3. battery power pack, 4. active and passive radio connectors, 5. radio, and 6. phone connector)

To conduct survey on impact of electricity on living conditions of beneficiaries Assist beneficiaries in collaboration with Though Stuff in any case of technical problems of

solar kits Article 4: Responsibilities of beneficiaries of solar kits:

To follow rules given by Though Stuff about how to keep well solar kits To give all required information on the impact of electrification on the living conditions To communicate Though Stuff on the encountered problems about the use of solar kits Don’t sell or give freely solar kits to someone else Turn back to RWI/ISS solar kits when beneficiaries are not able to keep them

Done at ….., the….December 2011 Signature Beneficiary’s name:……………………………………

Signature Name………………………………………………………. Local Authorities representative………………………………….

Signature Name…………………………………………………. Representative of RWI-ISS

AppendixS4:ExternalValidityofresults

Externalvalidity refers to thequestionwhether resultsobserved ina certain study canbe

expectedtobetransferabletootherregionsorwhethertheywouldalsoapplyiftheprogram

underevaluationwasupscaled(outsidetherandomisedexperiment).Itisfrequentlyargued

that RCTs aremore prone to external validity problems than observational studies.We

thereforediscussthehazardstoexternalvalidityastheyareidentifiedbyDuflo,Glennerster,

andKremer(2008).

Representativenessofthestudypopulationforadifferentpolicypopulation

Onpurpose,weselectedregionsthatareveryremoteforRwandancomparisonandhavevery

limitedaccesstomodernenergysources.Inaddition,theseregionswerenotscheduledtobe

connectedtotheelectricitygridinthesubsequentyears.Thecommunitiesarelocatedinfour

differentdistricts,coveringthreeoutoffiveRwandanprovinces.Thismightnotrepresentthe

typicaltargetareaofcommercialPico‐PVdisseminationapproaches.Forpurchasingpower

reasonssuchapproachesmightratherfocusontheperipheryofthegridcoveredareasoreven

ongrid‐connectedandurbanareas,inwhichPico‐PVdevicesareusedasback‐upintimesof

outages.Incontrast,itwastheaimofthisevaluationtoassesstheextenttowhichPico‐PVcan

generallycontributetothecombatagainstenergypoverty.Thiscontributionwouldhappen

inregions thatare farbeyond theoutreachof thegrid (orothermoreexpensiveelectricity

sourceswithhighercapacities).Hence,theresultsobtainedinthisstudyaretransferableto

other set‐ups inwhich Pico‐PV is not onlymarketed for commercial reasons, but as an

instrumenttoprovidemodernenergytothepoor.ThisistheexplicitgoalofSE4Allandalso

therolethatisassignedtoPico‐PVwithinthisSE4Allinitiative.

Moreover,intheevaluationreportunderlyingthepresentstudy(seeGrimmetal.2013)we

comparetheRCTsampleandusagebehaviourintheRCTtorealusersofthePico‐PVkitin

otherregionsofthecountry,thisis,customerswhodeliberatelydecidedtobuythekit.Inline

withexpectations,itcanbeseenthatthesereal‐worldusersaresomewhatwealthierthanthe

averageRCTuser,butusagepatterns forthekit’slamparequitesimilar(seeGrimmetal.

2013,Section4.4.).

GeneralEquilibriumeffects

GeneralEquilibriumeffectsareeffectsthatonlyoccurorbecomeperceivableifthetreatment

isprovided toa largerpopulationor fora longerperiod.Hence, these effectsmighthave

repercussionsontheRCTsampleandcanonlybecapturedbytheRCTiftheperiodbetween

randomizationandtheimpactassessmentislongenoughandthestudypopulationislarge

enough.Inthepresentcase,onecouldtheoreticallythinkofdecreasingpricesoftraditional

lightingsourcesbecauseofadecreasingdemand,whichinturncouldincreaseconsumption

oftraditionallightingsourcesbyhouseholdsbothintheRCTsampleandbeyond.Thiseffect

canbeexpectedtobeverysmall,though,sinceenergypricesaremostlydrivenbyregional

marketsifnotworldmarkets.Ontheotherhand,incaseonewouldupscaletheprogramto

thewholecountry(i.e.distributePico‐PVkitsonalargescale),forexample,sucheffectscould

occurforproductswitharegionalvaluechain(i.e.thatdonotonlydependonworldmarket

prices).

As for the timehorizon,ourevaluationexaminesshort‐termusageand impacts.Whilewe

believe that the sixmonthsperiodbetweendeliveryof thePico‐PVkitandour follow‐up

surveyislongenoughtoallowtheusers’adaptationtothenewtechnology,wecannotrule

outthatusagebehaviourwouldchangeovertime.

Hawthorne‐andJohn‐Henry‐Effects

Hawthorne‐ and John‐Henry‐effects occur if participants in an experiment change their

behaviourbecausetheyknowthattheyareparticipatinginanexperiment.Totheextentthat

the fieldwork teamhas to interactwith the studypopulation, these effects canhardlybe

excludedcompletelyinmostRCTs.However,therearewaystokeepthemassmallaspossible,

mostlybyreducingtheattentionthatisevokedintheparticipatinghouseholdandthevillages.

Thesurveysusedforthisstudywerepresentedaspartofa*generalsurveyonenergyusagein

relation to on‐going and well‐known energy interventions. Respondents were asked to

consent toparticipating inthesurvey,buttherandomizationor theexperimentalcharacter

were notmentioned.A permission letter issued by the Rwandan EnergyAuthoritywas

presented to the local authorities aswell as theparticipatinghouseholds bothduring the

baselinesurveyandthefollow‐upsurvey.Infact,ourstudywaspartofabroaderevaluation

engagement inthecountry,whichalsocovered50different targetvillagesoftheRwandan

gridroll‐outprogrammeEARP(seeLenzetal.2016).Althoughthestudyregionsofthepresent

paperwerenotscheduledtobeconnectedbyEARPinthenearfuture,mostoftheresidents

areawareoftheelectrificationprogrammethatpossiblywillalsoreachtheircommunities.The

survey work was implemented as unobtrusive as possible. Each household was visited

individually.

Furthermore, the randomly assigned Pico‐PV systemwas not labelled as a gift, but as a

compensationforparticipationinthesurvey.Also,householdsassignedtothecontrolgroup

receivedacompensationconsistingofasackof5kgofriceandonelitreofcookingoil.19Asa

sideeffect,thiscompensationforthecontrolgroupaddressesapotentialethicalconcernthat

issometimesbroughtforwardagainstRCTs:Randomlyassigningatreatmenttoonegroup

mayinduceuncomfortablefeelingsintheothergroup.

Insum,whilesomesortofsurveyeffectisunavoidable,thereisnoreasontoexpectstrong

Hawthorne and John Henry‐effects, since the participants were not informed about an

experiment,both treatmentandcontrolgroups receiveda reimbursem*nt forparticipation

andthesurveysandinterviewswereimplementedasunobtrusiveaspossible.

SpecialCare

Theway inwhichweprovided thePico‐PVkit(most importantly the training)was in line

19ThisimplementationdesignfollowstheapproachpresentedinDeMel,McKenzie,andWoodruff(2008)andwas

alsoappliedinaRCTwithimprovedcookingstovesinSenegal(BenschandPeters2015).

withwhatthecompanythatmarketedtheproducthadforeseenforthemarketingprocess.

AlthoughthelevelofcarewasprobablyhighercomparedtosomeotherPico‐PVkitsthatare

justsoldinshopsanddonotcompriseatraining,manyregularmarketvendorsalsooffersuch

trainings.

References

Bensch,GuntherandJörgPeters.2015.“Theintensivemarginoftechnologyadoption–Experimental

EvidenceonimprovedcookingstovesinruralSenegal.”JournalofHealthEconomics42:44‐63.

Duflo,E.,R.Glennerster, andM.Kremer. 2008.UsingRandomization inDevelopmentEconomics

Research:AToolkit,Chapter61,HandbookofDevelopmentEconomics.

Grimm,Michael,JörgPeters,andMaximilianeSievert.2013.ImpactsofPico‐PVSystemsUsageusinga

Randomized Controlled Trial andQualitativeMethods. Final Report on behalf of the Policy and

OperationsEvaluationDepartment(IOB)oftheNetherlandsMinistryofForeignAffairs.

Lenz, Luciane,AnicetMunyehirwe, Jörg Peters andMaximiliane Sievert (2016)Does Large Scale

InfrastructureInvestmentAlleviatePoverty?ImpactsofRwanda’sElectricityAccessRoll‐OutProgram.

WorldDevelopment,forthcoming.

Mel, Suresh de, David McKenzie, and Christopher Woodruff. 2008. “Returns to Capital in

Microenterprises:EvidencefromaFieldExperiment.”QuarterlyJournalofEconomics,123(4):1329–72.

AppendixS5:RadioUsage

TableS5.1portrays theeffectsof thePico‐PVkit treatmenton radioownershipandusage

patterns.SincetherandomizedPico‐PVkitencompassesaradio,theshareofradioownersis

closeto100percentinthetreatmentgroup,whileslightlymorethan50percentofthecontrol

grouphouseholdsownaradio.Itisabovealltheheadofthehouseholdwhousestheradio,

buttheincreasednumberofradiosinthehouseholdsalsoleadstosignificantlyincreasedradio

usageofotherhouseholdmembers.Theshareofmemberslisteningtotheradioissignificantly

higherinthetreatmentgroupforallhouseholdmembers.Thelisteninghoursforthosewho

usearadioonlyincreasessignificantlyfortheheadofhouseholds.

TableS5.1:Radioownershipandusage

Treatment Control ITT p‐value

RadioOwnership 95% 52% 41% 0.000

HHmemberlistensregularlytoradio

HeadofHH 86% 43% 41% 0.000 ‐ Listeninghoursperday(onlyuser) 4.3 3.2 1.1 0.012

Spouse 78% 42% 34% 0.000 ‐ Listeninghoursperday(onlyuser) 3.3 2.7 0.4 0.289

Boys12‐17years 76% 47% 33% 0.048

‐ Listeninghoursperday(onlyuser) 2.2 2.0 ‐0.1 0.907

Girls12‐17years 80% 42% 26% 0.151

‐ Listeninghoursperday(onlyuser) 1.7 2.1 ‐0.3 0.639

Children6‐11years 63% 33% 16% 0.090 ‐ Listeninghoursperday(onlyuser) 1.9 2.2 0.4 0.631

Radiosaremostlyusedtolistentoprogramsthattransmitinformation(seeTableS5.2).We

askedallradiouserstonametheirtwofavouriteradioprograms:thebyfarmostpreferred

programamongadultsarenews,followedbymusic.Thethirdpreferenceareprogramsthat

peoplerefertoas“théatre”.Theseareradioplaysthattrytoraiseawarenessondifferenttopics

likereconciliation,workingattitude,orjustice.Thelastcategorysubsumesspecialbroadcasts

topicslikepoliticsorhealth(‘broadcasts’inTableS5.2).

TableS5.2:Preferredradioprogramsperhouseholdmember

(inpercent)Treatment Control ITT p‐value

HeadofHH Music 46 62 ‐17 0.062

(N=193) News 84 86 ‐4 0.408

Theatre 13 5 10 0.056

Broadcast 13 8 1 0.847

Other 14 15 3 0.697

Spouse Music 43 67 ‐29 0.006

(N=158) News 71 68 5 0.426

Theatre 24 14 8 0.245

Broadcast 10 9 ‐1 0.893

Other 16 12 12 0.114

Children Music 76 71 ‐2 0.907

6‐11yearsold News 31 39 ‐1 0.963

(N=77) Theatre 22 14 ‐7 0.498

Broadcast 8 11 4 0.709

Other 4 11 ‐2 0.836

Male Music 70 83 8 0.824

12‐17yearsold News 47 63 ‐24 0.425

(N=54) Theatre 10 17 ‐20 0.247

Broadcast 13 8 ‐21 0.238

Other 13 8 12 0.562

Female Music 89 84 16 0.309

12‐17yearsold News 44 58 ‐11 0.613

(N=64) Theatre 18 16 ‐2 0.940

Broadcast 9 5 ‐3 0.856

Other 16 11 5 0.777

Inlinewiththeseusagepatterns,radioisbyfarthemostimportantsourceofinformationin

thesurveyedvillages.Morethan90percentoftreatmenthouseholdsand40percentofcontrol

households answer to an open question on their main source of information that they

exclusivelyortogetherwithothersourcesreceive informationthrough theradio(seeTable

S5.3). Apart from this, direct conversations with other people (community gatherings,

neighboursandfriends)arethemostimportantsourcesofinformation.TVsandnewspaper

are only used by a negligible number of households.While for treated households the

importance of radio is substantially higher, control households relymore on community

gathering and information exchangewith neighbours and friends. This obviously creates

potentialsforspilloversofincreasedaccesstoinformationforsomehouseholdstothewhole

village.

TableS5.3:Mainsourceofinformation(multipleanswerspossible)

Treatment Control ITT p‐value

Radio 91 40 51 0.000

Communitygathering 70 82 ‐11 0.029

Neighbours/friends 28 28 0 0.929

BoxS5.1:RadiostationsinRwanda

InRwanda, thebiggest radiostation is thestate‐financedRadioRwanda that reachesmore than90

percentofthepopulation.Itbroadcasts24hoursinKinyarwanda,French,EnglishandSwahili.Radio

Rwandamaintainsadditionally5communityradiostationsthatpartlybroadcastcontributionsfrom

RadioRwandaandadditionallycover localnewsandregional information.Since2002,alsoprivate

radiostationshavereceivedlicencestobroadcast.Theirreceptionarea,though,ismainlyrestrictedto

Kigaliandbigger towns.Withinoursurveyarea,people frequentlyreported thatbesidesRwandan

radiostationstheycanalsoreceiveradiofromBurundiorCongo.

RadioRwandaanditscommunityradiostationscoverbothentertainmentandinformationbroadcasts.

ForexampleatRadioRusizi,thecommunityradioofRusizi,onaregulardaywheretheyofferprogram

from5amto23pm,musiccovers7hours,newssumuptoalmost4hours,3.5hoursofentertainment

showslikesoapoperas(“théatre”),quizzesorsportsevents,andalmost3hoursonbroadcastwithsome

educationalbackground.Theseeducationalbroadcastsdiffuseforexampleinformationonhygieneand

cleanliness,onagriculturalactivities,onanimalhusbandry,ongoodgovernance,ortoraiseworkers’

motivation.

AppendixS6:Additionaltables

LampUsage

TableS6.1:Numberoflightingdevicesandconsumption

Shareofhouseholdsusing[lamp] Operationhoursper

dayandlamp

Treatment Control ITT p‐

value

Treatment Control

Pico‐PVlamp 0.86 0.00 0.86* 0.00 2.89 ‐

Hand‐craftedLEDlamps 0.28 0.45 ‐0.18 0 3.45 3.40

Ready‐madetorch 0.14 0.22 ‐0.10 0.01 2.23 2.12

Wicklamp 0.12 0.43 ‐0.22 0 2.47 2.98

Candles 0.07 0.15 0.04 0.935 2.05 1.58

Hurricanelamp 0.04 0.10 ‐0.07 0.002 3.2 2.43

MobileLEDlamp 0.03 0.05 ‐0.03** 0.014 2 2.57

Nolamp 0.05 0.09 0.03 0.16 ‐ ‐

SUM 1.62 1.43 0.16 0.004 4.3 3.8

Note:TheITTdepictsthedifferenceinmeansatthefollow‐upstagebetweenthewholetreatmentandcontrolgroup,

alsoincludingnon‐complyinghouseholds.Wecontrolforallstratificationandre‐randomizationcharacteristics.

Rechargeable lamps and gas lamps are not included in the table, since only one control household uses a

rechargeablelampandonlyonetreatmenthouseholdusesagaslamp.

*Probitestimationisnotapplicable,sincecontrolgrouphouseholdsdonotusethelampleadingtoconvergence

problems;wedisplaysimpledifferencesinmeansinstead.**Controllingforrandomizationstratumdummiesleads

toconvergenceproblems.Weincludethestratificationcriteriainstead.

Health

TableS6.2:Shareofhouseholdswithhouseholdmemberssufferingdiseases(inpercent)

Treatment Control ITT p‐value

Maleadult Respiratorydiseases 7 7 ‐2 0.596

Eyeproblem 7 8 0 0.972

Femaleadult Respiratorydiseases 5 6 0 0.904

Eyeproblem 9 13 ‐6 0.128

Male Respiratorydiseases 2 2 1 0.785

6‐11yearsold Eyeproblem 2 6 ‐3 0.440

Female Respiratorydiseases 0 0 0 ‐‐‐

6‐11yearsold Eyeproblem 9 10 5 0.472

Male Respiratorydiseases 0 0 0 ‐‐‐

12‐17yearsold Eyeproblem 2 0 1 0.672

Female Respiratorydiseases 4 0 3 0.452

12‐17yearsold Eyeproblem 6 3 8 0.292

Note:Thedataisself‐reportedinformationofwhetheranyhouseholdmembersuffersfromanyofthediseases.The

ITT depicts the difference inmeans at the follow‐up stage between thewhole treatment and control group,

includingalsonon‐complyinghouseholds.Wecontrolforallstratificationandre‐randomizationcharacteristics.

Lampsusedfordomesticlabor

TableS6.3:Mostfrequentlyusedlampsforhouseworkbymaleandfemaleadult(percent

ofallhouseholds)

Femaleadultsdoing

housework

Maleadultsdoing

housework

Children(6‐17years)

studying

Lamp

Treat. Ctrl. ITT p‐

value

Treat. Ctrl. ITT p‐

value

Treat. Ctrl. ITT p‐value

Wicklamp 732 ‐23 0.000

3 9 ‐7 0.001

2 12

12***0.000

Ready‐madetorch 8 12 ‐7 0.056 3 7 ‐8 0.000

Hand‐craftedLED 79 ‐3 0.182

1 5

6**

0.003

Pico‐PVlamp 72 0 72* 0.000 26 0 26* 0.000 30 0 30* 0.000

None 15 42 ‐25 0.000 68 78 ‐9 0.006 32 41 ‐19 0.000

Noneandstudyingatdaytimeonly 9 18 ‐19 0.000

Noneandstudyingafternightfall 23 22 ‐2 0.633

Note:TheITTdepictsthedifferenceinmeansatthefollow‐upstagebetweenthewholetreatmentandcontrolgroup,

includingalsonon‐complyinghouseholds.Wecontrolforallstratificationandre‐randomizationcharacteristics.

Detailedestimationresultscanbefoundinthefollowing.

*Probitestimationisnotapplicable,sincecontrolgrouphouseholdsdonotusethelampleadingtoconvergence

problems;wedisplaysimpledifferencesinmeansinstead.**Controllingforrandomizationstratumdummiesleads

to convergence problems.We include the stratification criteria instead. *** Controlling for baseline kerosene

consumption (continuous) causes convergence problems.We include a dummy indicating baseline kerosene

consumptionyes/noinstead.

TableS6.3a:Mostfrequentlyusedlampsforhouseworkbyfemaleadult(%ofall

households)

Wicklamp Ready‐made

torch

Hand‐

crafted

LED

None

Treatment ‐0.228 ‐0.069 ‐0.034 ‐0.249

(0.000)*** (0.056)* (0.182) (0.000)***

Consumptionofcandles ‐0.001 ‐0.016 0.000 ‐0.001

(0.612) (0.001)*** (0.829) (0.854)

Consumptionofkerosene 0.013 ‐0.022 ‐0.017 0.017

(0.229) (0.427) (0.652) (0.151)

Numberofhouseholdmembers ‐0.005 0.011 ‐0.006 0.017

(0.676) (0.106) (0.347) (0.091)

Numberofmobilephones 0.047 0.005 0.013 ‐0.025

(0.270) (0.836) (0.484) (0.734)

Plastereddwelling ‐0.056 0.071 ‐0.000 0.147

(0.481) (0.024)** (0.994) (0.200)

Modernwall ‐0.073 ‐0.106 0.042 0.075

(0.217) (0.119) (0.390) (0.468)

Modernfloor 0.078 0.090 ‐0.058 ‐0.136

(0.094)* (0.076)* (0.246) (0.161)

Hand‐craftedLED ‐0.082 ‐0.095 0.071 0.042

(0.134) (0.022)** (0.012)** (0.507)

MobileLED ‐0.040 0.058 ‐0.008 0.007

(0.763) (0.379) (0.916) (0.962)

Householdownsland ‐0.238 0.104 ‐0.060 0.147

(0.003)*** (0.434) (0.176) (0.218)

Householdownsonegoat ‐0.064 0.072 ‐0.005 ‐0.019

(0.126) (0.109) (0.915) (0.808)

Householdownsseveralgoats ‐0.005 0.034 0.060 ‐0.005

(0.897) (0.430) (0.148) (0.932)

Householdownsonecow ‐0.033 0.001 0.025 ‐0.065

(0.543) (0.978) (0.521) (0.321)

Householdownsseveralcows 0.026 ‐0.056 ‐0.086 0.036

(0.657) (0.287) (0.055)* (0.722)

Headofhouseholdcompletedprimaryschool 0.046 0.085 ‐0.002 ‐0.095

(0.385) (0.045)** (0.937) (0.083)

Headofhouseholdcompletedsecondaryschool ‐0.100 0.185 n.i. ‐0.038

(0.136) (0.021)** (0.816)

Redistributedbetweenstrataforrandomization ‐0.029 0.078 n.i. 0.112

(0.853) (0.314) (0.409)

PseudoR‐Squared 0.36 0.32 0.29 0.20

NumberofObservations 294 294 294 294

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;Standard

errorsareclusteredatthevillagelevel.

n.i.:notincludedsincevariablepredictssuccessorfailureperfectly.

Table S6.3b: Most frequently used lamps for housework by male adult (% of all

households)

Wicklamp Ready‐

madetorch

Hand‐crafted

LED

None

Treatment ‐0.070 ‐0.078 ‐0.055 ‐0.085

(0.001)*** (0.000)*** (0.003)*** (0.006)***

Consumptionofcandles 0.004 ‐0.007 ‐0.013 0.002

(0.062)* (0.006)*** (0.113) (0.728)

Consumptionofkerosene 0.011 ‐0.043 ‐0.057 0.007

(0.006)*** (0.046)** (0.000)*** (0.545)

Numberofhouseholdmembers 0.007 0.009 0.002 0.003

(0.195) (0.025)** (0.427) (0.856)

Numberofmobilephones 0.006 ‐0.005 0.000 ‐0.048

(0.794) (0.587) (0.979) (0.391)

Modernfloor ‐0.010 0.050 n.i. ‐0.031

(0.874) (0.056)* (0.781)

Hand‐craftedLED ‐0.003 ‐0.053 0.037 ‐0.090

(0.900) (0.047)** (0.140) (0.089)*

Householdownsland ‐0.029 n.i. ‐0.022 0.009

(0.581) (0.447) (0.942)

Householdownsonegoat 0.039 ‐0.051 n.i. ‐0.023

(0.168) (0.216) (0.723)

Householdownsseveralgoats 0.077 0.082 ‐0.044 ‐0.107

(0.004)*** (0.000)*** (0.036)** (0.038)**

Householdownsonecow ‐0.007 ‐0.003 n.i. 0.030

(0.866) (0.896) (0.614)

Householdownsseveralcows ‐0.016 ‐0.045 0.013 0.130

(0.656) (0.244) (0.470) (0.134)

Headofhouseholdcompletedprimaryschool 0.036 0.048 ‐0.025 ‐0.036

(0.073)* (0.138) (0.040)** (0.485)

Redistributedbetweenstrataforrandomization 0.137 n.i. n.i. 0.109

(0.039)** (0.646)

Plastereddwelling n.i. 0.009 n.i. 0.191

(0.526) (0.079)*

Modernwall n.i. ‐0.059 ‐0.047 0.072

(0.073)* (0.049)** (0.488)

MobileLED n.i. ‐0.050 0.121 ‐0.110

(0.317) (0.000)*** (0.359)

Head of household completed secondary

school

n.i. 0.075 0.020 ‐0.065

(0.147) (0.568) (0.528)

Householdownsaradio n.i. n.i. ‐0.004 n.i.

(0.811)

Householdownsamobilephone n.i. n.i. 0.038 n.i.

(0.000)***

Consumptionoflightinghours n.i. n.i. ‐0.001 n.i.

(0.883)

PseudoR‐Squared 0.36 0.51 0.51 0.17

NumberofObservations 294 294 295 294

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

n.i.:notincludedsincevariablepredictssuccessorfailureperfectly.

TableS6.3c:Mostfrequentlyusedlampsforstudyingbychildren(%ofhouseholdswith

childrenatschoolage;N=208)

Wicklamp Nolamp Noneand

studyingat

daytime

only

Noneand

studying

after

nightfall

Treatment ‐0.118 ‐0.194 ‐0.185 ‐0.020

(0.000)*** (0.000)*** (0.000)*** (0.633)

Consumptionofcandles 0.002 ‐0.004 ‐0.009 ‐0.001

(0.327) (0.235) (0.116) (0.780)

Numberofhouseholdmembers 0.021 0.009 0.003 0.006

(0.049)** (0.623) (0.748) (0.669)

Numberofmobilephones ‐0.027 0.089 0.059 0.015

(0.211) (0.319) (0.272) (0.827)

Plastereddwelling ‐0.031 ‐0.053 ‐0.061 ‐0.083

(0.526) (0.616) (0.540) (0.284)

Modernwall ‐0.137 ‐0.069 ‐0.041 ‐0.082

(0.008)*** (0.378) (0.530) (0.232)

Modernfloor 0.025 ‐0.088 n.i. 0.049

(0.692) (0.525) (0.453)

Hand‐craftedLED ‐0.049 ‐0.092 ‐0.065 ‐0.020

(0.312) (0.360) (0.005)*** (0.773)

Householdownsonegoat ‐0.041 0.109 0.083 0.054

(0.415) (0.257) (0.005)*** (0.628)

Householdownsseveralgoats ‐0.138 0.178 0.027 0.137

(0.014)** (0.012)** (0.644) (0.015)**

Householdownsonecow ‐0.022 0.100 0.125 ‐0.039

(0.652) (0.292) (0.040)** (0.621)

Householdownsseveralcows 0.118 0.217 ‐0.051 0.142

(0.021)** (0.033)** (0.674) (0.086)*

Headofhouseholdcompletedprimaryschool ‐0.013 ‐0.058 0.056 ‐0.106

(0.797) (0.543) (0.269) (0.179)

Headofhouseholdcompletedsecondaryschool 0.033 ‐0.123 ‐0.027 ‐0.229

(0.574) (0.543) (0.842) (0.216)

Consumptionofkerosene n.i. ‐0.144 ‐0.111 ‐0.060

(0.015)** (0.005)*** (0.110)

Householdownsland n.i. 0.055 0.014 0.064

(0.751) (0.891) (0.663)

Redistributedbetweenstrataforrandomization n.i. 0.177 ‐0.655 0.204

(0.379) (0.000)*** (0.216)

MobileLED n.i. 0.116 n.i. 0.186

(0.558) (0.147)

PseudoR‐Squared 0.50 0.27 0.40 0.33

NumberofObservations 207 207 207 207

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

n.i.:notincludedsincevariablepredictssuccessorfailureperfectly.

TableS6.4:MainOccupationatbaseline(inpercent)

Treatment Control

Headofhousehold SubsistenceFarmer 90 83

GovernmentEmployee 1 1

Otherindependentoccupation 3 5

Otherdependentoccupation 1 5

Housewife,Retired 4 6

Unemployed 1 0

Spouse SubsistenceFarmer 98 93

GovernmentEmployee 2 0

Otherindependentoccupation 0 1

Otherdependentoccupation 0 2

Housewife,Retired 0 3

Studies 0 1

AppendixS7:Fullregressionresultsoftablesinmaindocument

Table5:Priceandconsumptionoflightingenergy

VARIABLES Costper

lightinghour

Costper

lumenhour

Lightinghours

consumed

perday

Lumenhours

consumed

perday

Treatment ‐7.022 ‐0.566 0.585 77.736

(0.000)*** (0.000)*** (0.074)* (0.000)***

Consumptionofcandles 0.182 0.012 0.021 0.026

(0.013)** (0.009)*** (0.267) (0.983)

Consumptionofkerosene 1.260 0.109 0.054 ‐3.696

(0.001)*** (0.000)*** (0.718) (0.163)

Numberofhouseholdmembers ‐0.017 0.001 0.013 ‐4.296

(0.911) (0.950) (0.851) (0.374)

Numberofmobilephones ‐0.392 ‐0.034 1.296 21.644

(0.528) (0.355) (0.007)*** (0.019)**

Plastereddwelling ‐2.112 ‐0.208 0.709 ‐14.458

(0.120) (0.012)** (0.372) (0.607)

Modernwall 1.529 0.147 ‐1.249 ‐27.763

(0.310) (0.141) (0.039)** (0.077)*

Modernfloor 3.310 0.132 0.461 ‐40.420

(0.064)* (0.120) (0.549) (0.243)

HandcraftedLED ‐1.494 ‐0.059 0.592 ‐10.708

(0.136) (0.414) (0.295) (0.452)

MobileLED ‐1.607 ‐0.167 0.873 47.231

(0.300) (0.108) (0.405) (0.199)

Householdownsland ‐1.447 ‐0.085 ‐0.181 19.863

(0.139) (0.285) (0.868) (0.430)

Householdownsonegoat ‐2.448 ‐0.154 ‐0.296 ‐38.858

(0.119) (0.090)* (0.563) (0.307)

Householdownsseveralgoats 0.757 0.024 0.021 ‐16.033

(0.591) (0.789) (0.967) (0.608)

Householdownsonecow ‐0.004 ‐0.063 0.879 19.648

(0.998) (0.409) (0.078)* (0.225)

Householdownsseveralcows 1.784 0.213 0.205 75.429

(0.090)* (0.044)** (0.670) (0.239)

Headofhouseholdcompletedprimaryschool 0.919 0.049 0.492 13.202

(0.165) (0.466) (0.311) (0.305)

Headofhouseholdcompletedsecondaryschool 3.560 0.276 ‐0.980 ‐33.814

(0.085)* (0.076)* (0.543) (0.348)

Redistributedbetweenstrataforrandomization ‐0.018 0.006 1.319 20.259

(0.990) (0.967) (0.202) (0.530)

Constant 9.486 0.661 2.138 ‐17.590

(0.012)** (0.023)** (0.329) (0.603)

Observations 265 265 288 288

AdjustedR‐squared 0.397 0.404 0.121 0.165

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Table6a:Expenditurespermonthpercategory(inFRW)

VARIABLES Candles Kerosene Char

coal

Big

batteries

Small

batteries

Mobile

phone

charging

Treatment ‐19.927 ‐418.007 1.917 ‐9.344 ‐43.352 ‐67.916

(0.339) (0.000)*** (0.447) (0.750) (0.003)*** (0.407)

Consumptionofcandles 29.621 8.273 ‐0.019 0.405 ‐1.165 19.456

(0.000)*** (0.165) (0.780) (0.911) (0.537) (0.039)**

Consumptionofkerosene 1.833 169.929 ‐0.096 9.460 ‐0.074 7.410

(0.753) (0.007)*** (0.594) (0.133) (0.978) (0.686)

Numberofhouseholdmembers 8.228 8.295 ‐0.934 ‐2.416 1.281 29.491

(0.267) (0.567) (0.382) (0.829) (0.678) (0.383)

Numberofmobilephones ‐9.833 195.483 7.513 60.265 17.418 1,100.513

(0.631) (0.067)* (0.367) (0.149) (0.232) (0.009)***

Plastereddwelling 16.502 ‐63.128 ‐0.548 ‐70.298 ‐12.142 205.632

(0.581) (0.576) (0.726) (0.330) (0.686) (0.198)

Modernwall ‐44.866 ‐120.093 ‐0.820 64.199 ‐58.167 63.933

(0.322) (0.267) (0.617) (0.504) (0.058)* (0.686)

Modernfloor 56.056 281.553 ‐2.738 ‐65.299 22.367 ‐434.782

(0.246) (0.050)* (0.360) (0.282) (0.599) (0.060)*

Hand‐craftedLED 18.316 9.387 ‐4.571 20.710 ‐15.293 86.275

(0.392) (0.925) (0.334) (0.686) (0.440) (0.552)

MobileLED ‐2.633 255.134 ‐3.422 139.388 21.636 ‐84.409

(0.965) (0.234) (0.403) (0.361) (0.735) (0.867)

Householdownsland ‐0.584 ‐117.541 5.549 179.692 ‐19.392 ‐14.158

(0.986) (0.287) (0.185) (0.036)** (0.544) (0.942)

Householdownsonegoat 73.643 ‐134.849 ‐1.542 26.665 ‐16.252 ‐11.673

(0.000)*** (0.225) (0.500) (0.621) (0.202) (0.912)

Householdownsseveralgoats 10.973 ‐111.840 ‐1.314 164.868 33.091 287.823

(0.609) (0.363) (0.510) (0.042)** (0.219) (0.036)**

Householdownsonecow ‐11.154 ‐151.915 5.046 134.052 14.472 74.082

(0.533) (0.076)* (0.290) (0.019)** (0.707) (0.600)

Householdownsseveralcows 93.441 91.004 ‐1.129 68.589 ‐19.832 ‐136.453

(0.027)** (0.486) (0.673) (0.315) (0.233) (0.568)

Headofhouseholdcompletedprimaryschool ‐27.737 89.954 1.490 115.139 ‐2.168 26.694

(0.095)* (0.332) (0.353) (0.004)*** (0.885) (0.799)

Headofhouseholdcompletedsecondaryschool 83.751 26.200 ‐0.821 326.077 110.878 ‐523.982

(0.277) (0.880) (0.717) (0.047)** (0.408) (0.153)

Redistributedbetweenstrataforrandomization 44.463 56.283 1.826 126.782 ‐80.459 185.076

(0.488) (0.769) (0.426) (0.403) (0.231) (0.292)

Constant ‐227.965 ‐283.081 ‐

18.863

‐419.144 261.650 ‐320.098

(0.049)** (0.463) (0.259) (0.173) (0.130) (0.723)

Observations 296 296 295 296 296 296

AdjustedR‐squared 0.622 0.356 ‐0.019 0.275 0.046 0.480

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations.Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Table6b:Expenditurespermonthpercategory(inFRW)

VARIABLES Totaltraditional

energyexpenditures

(withoutcooking)

Total

expenditures

Shareofenergy

expenditureon

totalexpenditures

Treatment ‐556.653 7,249.033 ‐0.030

(0.000)*** (0.276) (0.001)***

Consumptionofcandles 56.573 ‐603.375 0.001

(0.002)*** (0.074)* (0.017)**

Consumptionofkerosene 188.463 2,594.154 0.003

(0.010)** (0.002)*** (0.144)

Numberofhouseholdmembers 43.955 3,700.456 0.000

(0.315) (0.135) (0.922)

Numberofmobilephones 1,371.322 22,314.462 0.013

(0.004)*** (0.051)* (0.164)

Plastereddwelling 75.918 21,254.017 ‐0.023

(0.724) (0.165) (0.066)*

Modernwall ‐95.781 23,581.834 ‐0.002

(0.672) (0.137) (0.893)

Modernfloor ‐142.721 ‐7,699.614 0.016

(0.550) (0.719) (0.143)

Hand‐craftedLED 114.774 1,974.949 ‐0.004

(0.525) (0.762) (0.724)

MobileLED 325.633 ‐1,101.144 ‐0.003

(0.561) (0.930) (0.854)

Householdownsland 33.578 2,184.018 0.010

(0.881) (0.485) (0.364)

Householdownsonegoat ‐64.025 ‐7,456.327 0.006

(0.721) (0.112) (0.610)

Householdownsseveralgoats 383.684 8,874.944 ‐0.005

(0.082)* (0.524) (0.643)

Householdownsonecow 64.631 ‐4,661.881 0.001

(0.693) (0.381) (0.924)

Householdownsseveralcows 95.617 14,374.902 ‐0.015

(0.777) (0.171) (0.302)

Headofhouseholdcompletedprimaryschool 203.383 5,767.114 ‐0.003

(0.217) (0.329) (0.791)

Headofhouseholdcompletedsecondaryschool 22.096 ‐8,550.415 ‐0.004

(0.965) (0.701) (0.836)

Redistributedbetweenstrataforrandomization 333.947 ‐9,091.174 0.013

(0.137) (0.214) (0.729)

Constant ‐1,007.517 ‐45,103.310 0.071

(0.342) (0.298) (0.150)

Observations 296 296 295

AdjustedR‐squared 0.582 0.250 0.136

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations.Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Table8a:Dailytimespentondomesticlabour

VARIABLES Totaltimeof

headof

household

Timeduring

nightofhead

ofhousehold

Totaltime

ofspouse

Timeduring

nightof

spouse

Treatment ‐1.674 6.150 26.953 2.752

(0.950) (0.542) (0.333) (0.779)

Consumptionofcandles ‐0.431 ‐0.858 3.755 0.320

(0.871) (0.099)* (0.182) (0.705)

Consumptionofkerosene ‐6.370 ‐1.981 ‐4.528 0.123

(0.274) (0.129) (0.339) (0.954)

Numberofhouseholdmembers ‐3.233 ‐0.591 3.293 5.514

(0.660) (0.793) (0.735) (0.248)

Numberofmobilephones 39.520 7.932 32.397 28.709

(0.103) (0.367) (0.306) (0.029)**

Plastereddwelling ‐2.937 8.097 ‐15.112 2.584

(0.952) (0.556) (0.764) (0.890)

Modernwall ‐42.319 ‐10.732 29.055 6.767

(0.353) (0.389) (0.627) (0.768)

Modernfloor ‐0.894 15.761 ‐50.724 ‐20.211

(0.986) (0.211) (0.184) (0.430)

HandcraftedLED ‐9.829 0.960 ‐64.496 ‐19.938

(0.726) (0.904) (0.108) (0.354)

MobileLED ‐104.698 ‐13.120 72.072 99.724

(0.061)* (0.552) (0.331) (0.008)***

Householdownsland ‐57.488 ‐18.418 ‐180.938 ‐67.553

(0.314) (0.378) (0.135) (0.113)

Householdownsonegoat 44.618 11.146 ‐60.298 ‐0.667

(0.359) (0.438) (0.186) (0.965)

Householdownsseveralgoats ‐10.393 ‐0.429 ‐42.010 ‐28.114

(0.820) (0.967) (0.478) (0.170)

Householdownsonecow ‐14.606 ‐13.052 36.974 8.110

(0.748) (0.290) (0.281) (0.565)

Householdownsseveralcows ‐0.574 ‐18.584 ‐38.480 2.483

(0.989) (0.065)* (0.509) (0.897)

Headofhouseholdcompletedprimaryschool ‐10.490 ‐6.117 ‐25.867 2.283

(0.755) (0.488) (0.427) (0.793)

Headofhouseholdcompletedsecondaryschool ‐22.247 ‐20.982 12.455 23.273

(0.748) (0.459) (0.902) (0.601)

Redistributedbetweenstrataforrandomization 99.878 ‐28.758 0.900 55.525

(0.347) (0.139) (0.991) (0.187)

Constant 463.535 86.662 80.674 ‐55.506

(0.054)* (0.060)* (0.603) (0.313)

Observations 287 287 257 257

AdjustedR‐squared 0.000 ‐0.042 ‐0.006 0.092

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Outcomevariableshavebeentransformedtoadecimalsystem.Forretransformationmultiplywith0.6.

Table8b:Dailytimespentondomesticlabourandincomegeneration

VARIABLES Totaltimeof

headof

household

Timeduring

nightofhead

ofhousehold

Totaltime

ofspouse

Timeduring

nightof

spouse

Treatment 34.898 ‐0.633 16.890 ‐0.000

(0.215) (0.823) (0.354) (0.462)

Consumptionofcandles 0.115 ‐0.030 ‐0.038 ‐0.000

(0.953) (0.828) (0.983) (0.178)

Consumptionofkerosene 17.951 0.640 ‐44.361 0.000

(0.022)** (0.292) (0.107) (0.070)*

Numberofhouseholdmembers 14.813 0.366 12.094 0.000

(0.072)* (0.647) (0.208) (0.063)*

Numberofmobilephones 27.912 ‐2.668 ‐47.178 ‐0.000

(0.374) (0.169) (0.088)* (0.029)**

Plastereddwelling 5.573 15.244 ‐77.895 0.000

(0.935) (0.138) (0.131) (0.708)

Modernwall ‐45.806 ‐9.566 4.021 ‐0.000

(0.471) (0.071)* (0.955) (0.084)*

Modernfloor 24.199 6.033 111.740 0.000

(0.701) (0.377) (0.058)* (0.364)

HandcraftedLED ‐13.573 0.767 ‐90.818 0.000

(0.729) (0.637) (0.073)* (0.035)**

MobileLED 90.041 32.162 41.571 0.000

(0.510) (0.297) (0.597) (0.040)**

Householdownsland 34.368 0.377 ‐113.986 ‐0.000

(0.734) (0.924) (0.001)*** (0.042)**

Householdownsonegoat ‐61.557 ‐3.939 ‐3.032 0.000

(0.229) (0.144) (0.860) (0.694)

Householdownsseveralgoats ‐67.281 ‐4.119 ‐3.641 0.000

(0.354) (0.156) (0.940) (0.508)

Householdownsonecow 9.356 ‐3.255 ‐35.505 ‐0.000

(0.850) (0.116) (0.366) (0.898)

Householdownsseveralcows 37.263 4.393 ‐51.729 0.000

(0.159) (0.361) (0.371) (0.065)*

Headofhouseholdcompletedprimaryschool 30.875 2.090 13.715 ‐0.000

(0.457) (0.156) (0.657) (0.355)

Headofhouseholdcompletedsecondaryschool 62.866 ‐3.830 ‐45.834 0.000

(0.530) (0.642) (0.588) (0.198)

Redistributedbetweenstrataforrandomization ‐58.066 ‐8.810 ‐100.196 0.000

(0.712) (0.321) (0.499) (0.708)

Constant 268.389 ‐21.343 1,324.191 150.000

(0.204) (0.195) (0.000)*** (0.000)***

Observations 218 218 219 219

AdjustedR‐squared ‐0.003 0.051 0.189 1.000

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Outcomevariableshavebeentransformedtoadecimalsystem.Forretransformationmultiplywith0.6.

Table8c:Dailytimeawake

VARIABLES Totaltimeof

headof

household

Timeduring

nightofhead

ofhousehold

Treatment 9.019 17.002

(0.739) (0.378)

Consumptionofcandles ‐0.913 0.304

(0.685) (0.673)

Consumptionofkerosene 1.820 ‐5.699

(0.689) (0.133)

Numberofhouseholdmembers 13.346 6.049

(0.046)** (0.104)

Numberofmobilephones 32.596 15.604

(0.234) (0.189)

Plastereddwelling 50.196 ‐30.972

(0.293) (0.676)

Modernwall ‐39.148 10.260

(0.222) (0.751)

Modernfloor ‐20.131 22.464

(0.727) (0.508)

HandcraftedLED 23.839 ‐52.063

(0.551) (0.081)*

MobileLED 27.487 7.605

(0.741) (0.841)

Householdownsland 124.099 ‐46.603

(0.325) (0.149)

Householdownsonegoat ‐66.221 ‐3.483

(0.068)* (0.916)

Householdownsseveralgoats ‐52.641 6.490

(0.094)* (0.770)

Householdownsonecow 24.014 ‐20.545

(0.308) (0.268)

Householdownsseveralcows 67.650 13.639

(0.078)* (0.540)

Headofhouseholdcompletedprimaryschool 59.966 4.630

(0.083)* (0.745)

Headofhouseholdcompletedsecondaryschool 101.419 10.572

(0.160) (0.781)

Redistributedbetweenstrataforrandomization 47.874 ‐15.860

(0.504) (0.762)

Constant 1,132.298 1,563.754

(0.000)*** (0.000)***

Observations 287 256

AdjustedR‐squared 0.001 0.040

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Outcomevariableshavebeentransformedtoadecimalsystem.Forretransformationmultiplywith0.6.

Table9a:Studypattern(onlyhouseholdswithchildrenatschoolage;6‐17years)

Shareofhouseholdswith

childrenstudying

afterschool

Shareofhouseholdswith

childrenstudying

athomeafternightfall

Treatment 0.053 0.142

(0.389) (0.006)***

Consumptionofcandles ‐0.008 ‐0.006

(0.188) (0.088)*

Consumptionofkerosene 0.200 0.109

(0.005)*** (0.028)**

Numberofhouseholdmembers 0.013 0.039

(0.522) (0.025)**

Numberofmobilephones 0.152 ‐0.062

(0.077)* (0.115)

Plastereddwelling ‐0.093 ‐0.029

(0.405) (0.768)

Modernwall 0.071 ‐0.074

(0.344) (0.181)

Modernfloor ‐0.105 0.001

(0.407) (0.992)

Hand‐craftedLED 0.170 0.111

(0.093)* (0.122)

Householdownsland 0.084

(0.379)

Householdownsonegoat 0.160 0.049

(0.164) (0.494)

Householdownsseveralgoats 0.163 0.009

(0.081)* (0.889)

Householdownsonecow 0.179 ‐0.035

(0.099)* (0.579)

Householdownsseveralcows 0.139 0.043

(0.211) (0.659)

Headofhouseholdcompletedprimaryschool ‐0.051 ‐0.086

(0.469) (0.076)*

Head of household completed secondary

school

0.174 0.047

(0.353) (0.747)

Redistributed between strata for

randomization

1.404 0.284

(0.000)*** (0.021)**

PseudoR‐Squared 0.22 0.29

NumberofObservations 209 209

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

77

Table9b:Studypattern(onlyhouseholdswithchildrenatschoolage;6‐17years) (1) (2) (3) (4)

Time children study m611

Time children study m611

Time children study f611

Time children study f611

VARIABLES total night total night

Treatment 21.677 20.717 19.396 17.896

(0.093)* (0.045)** (0.533) (0.090)*

Consumptionofcandles

-0.056 -0.818 -2.145 -2.005

Consumptionofkerosene (0.968) (0.525) (0.354) (0.142)

27.913 36.604 35.199 42.368

#ofhouseholdmembers (0.141) (0.021)** (0.190) (0.000)***

-0.394 -1.548 0.586 -4.349

Numberofmobilephones (0.926) (0.728) (0.952) (0.132)

17.281 -8.491 -36.963 -13.436

Plastereddwelling (0.450) (0.503) (0.218) (0.144)

-14.352 -38.274 -87.895 -35.751

Modernwall (0.639) (0.052)* (0.183) (0.072)*

3.435 26.824 91.559 -6.578

Modernfloor (0.861) (0.159) (0.145) (0.726)

-48.736 -36.603 8.429 -29.381

Hand‐craftedLED (0.397) (0.131) (0.889) (0.071)*

23.893 25.171 47.443 57.773

MobileLED (0.285) (0.293) (0.279) (0.001)***

47.961 78.711 162.397 139.533

Householdownsland (0.275) (0.071)* (0.023)** (0.000)***

49.601 41.979 -2.465 0.857

Householdownsonegoat (0.117) (0.136) (0.941) (0.966)

36.085 6.248 -65.871 -2.252

Hhownsseveralgoats (0.218) (0.828) (0.325) (0.934)

18.801 14.272 -67.680 29.021

Householdownsonecow (0.497) (0.581) (0.397) (0.162)

42.575 32.030 88.579 -13.953

Hhownsseveralcows (0.091)* (0.232) (0.244) (0.430)

39.019 69.939 85.677 22.076

Headofhouseholdcompletedprimary

school

(0.286) (0.012)** (0.376) (0.427)

-10.078 3.784 -19.635 9.669

Head of household completed

secondaryschool

(0.611) (0.748) (0.345) (0.528)

8.449 -13.685 -105.612 -18.220

Redistributed between strata for

randomization

(0.879) (0.798) (0.526) (0.662)

-22.938 -37.743 242.863 58.804

Constant (0.498) (0.129) (0.049)** (0.104)

-55.092 1.256 -4.198 -33.329

(0.231) (0.985) (0.959) (0.346)

Observations 100 101 92 92

AdjustedR‐squared 0.204 0.258 -0.040 0.329

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Outcomevariableshavebeentransformedtoadecimalsystem.Forretransformationmultiplywith0.6.

78

Table9c:Studypattern(onlyhouseholdswithchildrenatschoolage;6‐17years) (5) (6) (7) (8)

Time children study m1217

Time children study m1217

Time children study f1217

Time children study f1217

VARIABLES total night total night

Treatment 35.387 23.497 17.404 16.837

(0.191) (0.382) (0.327) (0.191)

Consumptionofcandles

-4.250 -4.168 -1.684 -0.854

Consumptionofkerosene (0.256) (0.207) (0.130) (0.486)

23.674 24.780 19.667 34.258

#ofhouseholdmembers (0.349) (0.245) (0.384) (0.166)

7.720 3.868 -0.121 -9.756

Numberofmobilephones (0.453) (0.473) (0.990) (0.224)

53.754 48.771 16.059 30.158

Plastereddwelling (0.096)* (0.098)* (0.540) (0.115)

60.881 16.034 24.574 -23.757

Modernwall (0.128) (0.685) (0.702) (0.715)

-84.749 -45.013 -7.744 27.478

Modernfloor (0.113) (0.411) (0.876) (0.356)

-130.294 -90.490 -40.608 -48.511

Hand‐craftedLED (0.015)** (0.134) (0.482) (0.372)

-12.113 -5.273 29.156 9.080

MobileLED (0.775) (0.894) (0.356) (0.796)

-98.814 -19.806 75.930 134.141

Householdownsland (0.163) (0.761) (0.459) (0.104)

30.819 21.946 -40.240 -54.034

Householdownsonegoat (0.398) (0.572) (0.566) (0.431)

69.840 21.248 29.489 4.769

Hhownsseveralgoats (0.114) (0.575) (0.404) (0.908)

28.914 26.683 7.878 28.657

Householdownsonecow (0.545) (0.522) (0.767) (0.105)

-0.046 -20.610 -15.382 -14.186

Hhownsseveralcows (0.999) (0.555) (0.538) (0.712)

-58.250 -81.834 40.908 13.216

Headofhouseholdcompletedprimary

school

(0.210) (0.041)** (0.474) (0.791)

25.100 0.865 -25.229 -26.903

Head of household completed

secondaryschool

(0.357) (0.971) (0.281) (0.294)

21.427 25.836 -96.871 -92.160

Redistributed between strata for

randomization

(0.740) (0.703) (0.003)*** (0.002)***

246.270 221.981 16.778 32.953

Constant (0.008)*** (0.019)** (0.773) (0.562)

-469.789 -337.756 108.898 177.112

(0.003)*** (0.033)** (0.487) (0.294)

Observations 89 89 94 94

AdjustedR‐squared 0.131 0.080 -0.152 0.017

Note:Robustpvalinparentheses;***p<0.01,**p<0.05,*p<0.1;

Randomizationstratadummiesareincludedinallestimations;Controlvariablesrefertobaselinevalues;

Standarderrorsareclusteredatthevillagelevel.

Outcomevariableshavebeentransformedtoadecimalsystem.Forretransformationmultiplywith0.6.

A First Step up the Energy Ladder? - [PDF Document] (2024)

References

Top Articles
Latest Posts
Article information

Author: Dean Jakubowski Ret

Last Updated:

Views: 5924

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Dean Jakubowski Ret

Birthday: 1996-05-10

Address: Apt. 425 4346 Santiago Islands, Shariside, AK 38830-1874

Phone: +96313309894162

Job: Legacy Sales Designer

Hobby: Baseball, Wood carving, Candle making, Jigsaw puzzles, Lacemaking, Parkour, Drawing

Introduction: My name is Dean Jakubowski Ret, I am a enthusiastic, friendly, homely, handsome, zealous, brainy, elegant person who loves writing and wants to share my knowledge and understanding with you.